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For a given subset S ⊆ V (G) of a graph G , the pair (G, S) is knitted
if for every partition of S into non-empty subsets S1, S2, . . . , St ,
there are disjoint connected subgraphs C1, C2, . . . , Ct in G so that
Si ⊆ Ci . A graph G is �-knitted if (G, S) is knitted for all S ⊆ V (G)

with |S| = �. In this paper, we prove that every 9�-connected graph
is �-knitted.
Hadwiger’s Conjecture states that every k-chromatic graph contains
a Kk-minor. We use the above result to prove that the connectivity
of minimal counterexamples to Hadwiger’s Conjecture is at least
k/9, which was proved to be at least 2k/27 in Kawarabayashi
(2007) [4].

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

One of the most interesting problems in graph theory is Hadwiger’s Conjecture, which states that
every k-chromatic graph has a Kk-minor, where a graph H is a minor of a graph G if H can be obtained
from a subgraph of G by contracting edges.

It is known that Hadwiger’s Conjecture holds for k � 6. Wagner [11] in 1937 proved that the case
k = 5 is equivalent to Four Color Theorem. About 60 years later, Robertson, Seymour and Thomas [8]
proved that the case k = 6 is also equivalent to the Four Color Theorem. In their proof, minimal
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counterexamples, which are also called “contraction-critical non-complete graphs”, play an important
role. Kawarabayashi and Toft [5] showed that 7-chromatic graphs contain a K7-minor or a K4,4-minor,
in which the connectivity property of minimal counterexamples are, again, really important.

Many researchers have considered the connectivity property of contraction-critical graphs. Dirac [2]
proved that every k-contraction-critical graph is 5-connected for k � 5, and Mader [7] extended 5-
connectivity to the deep result that every k-contraction-critical graph is 7-connected for k � 7 and
every 6-contraction-critical graph is 6-connected. Toft [10] proved that k-contraction-critical graphs
are k-edge-connected. Kawarabayashi [4] proved the first general result on the vertex connectivity of
minimal counterexamples to Hadwiger’s Conjecture.

Theorem 1. (See Kawarabayashi [4].) For all positive integers k, every minimal (with respect to the minor
relation) k-chromatic counterexample to Hadwiger’s Conjecture is � 2k

27 �-connected.

In the proof of the above theorem, the main tool used was so-called k-linked graphs. A graph G
is k-linked if for every 2k distinct vertices u1, v1, u2, v2, . . . , uk, vk in G , there are k disjoint paths
P1, P2, . . . , Pk such that Pi connects ui and vi . k-linked graphs are very well-studied and play a very
important role in the study of graph structures.

In this paper, we improve the result in Theorem 1, by studying a notion called “knitted graph”
introduced by Bollobás and Thomason [1].

For 1 � m � k � |V (G)|, a graph is (k,m)-knit if whenever S is a set of k vertices of G and
S1, . . . , St is a partition of S into t � m non-empty parts, G contains vertex-disjoint connected sub-
graphs C1, . . . , Ct such that Si ⊆ V (Ci), 1 � i � t . Clearly, a (2k,k)-knit graph is k-linked. In [1],
Bollobás and Thomason proved that if a k-connected graph G contains a minor H, where H is a graph
with minimum degree at least 0.5(|H| + �5k/2� − 2 − m), then G is (k,m)-knit. They used this result to
show that 22k-connected graphs are k-linked, which is the first linear upper bound of connectivity
for a graph to be k-linked.

We consider a slightly more general notion than (k,m)-knit. For a set S ⊆ V (G) of a graph G , the
pair (G, S) is knitted if for every partition of S into non-empty subsets S1, S2, . . . , St , there are disjoint
connected subgraphs C1, C2, . . . , Ct in G so that Si ⊆ Ci . A graph G is �-knitted if (G, S) is knitted for
all S ⊆ V (G) with |S| = �. It is clear that an �-knitted graph is (�,m)-knit for all m � �.

In this paper, we give a connectivity condition for a graph to be �-knitted.

Definition 1. The pair (A, B) is a separation of G if V (G) = A ∪ B and there is no edge between A − B
and B − A. The order of a separation (A, B) is |A ∩ B|. If S ⊆ A, then we say that (A, B) is a separation
of (G, S).

We shall prove the following theorem.

Theorem 2. Let k and � be positive integers and S ⊆ V (G) with |S| = � < k/9. If there is no separation of
(G, S) of size less than �, and every vertex in G − S has degree at least k − 1, then (G, S) is knitted.

The theorem we will prove, Theorem 7, on edge-density in Section 3 is actually stronger than
Theorem 2.

We are now ready to state and prove our result on connectivity of minimal counterexamples to
Hadwiger’s Conjecture.

Theorem 3. For all positive integer k, every k-chromatic minimal (with respect to the minor relation) coun-
terexample to Hadwiger’s Conjecture is � k

9 �-connected.

Proof. Assume by contradiction that the statement fails. Then we have a minimal k-chromatic graph
G that has no Kk-minor and is not k/9-connected. Take a minimum cutset S . Then |S| < k/9. Let A1
be a component of G − S and A2 = G − S − A1. Then both G[A1 ∪ S] and G[A2 ∪ S] have the chromatic
number at most k − 1.
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Let S1 be a maximum independent set in G[S], and let Si be a maximum independent set in
G[S − ⋃i−1

j=1 S j] for i � 2. Let v1, v2, . . . , v |S| be the set of vertices in S such that v1, . . . , v |S1| ∈
S1, v |S1|+1, . . . , v |S1|+|S2| ∈ S2, and so on. Observe that if we contract each of the subgraph induced by
Si into one vertex, then the resulting graph in S is a clique.

Note that the minimum degree of G is at least k − 1, thus each vertex in A p has at least k − 1
neighbors in A p ∪ S for p ∈ {1,2}. Note also that a separation in (A1 ∪ S, S) or (A2 ∪ S, S) is a separa-
tion in (G, S), thus (A1 ∪ S, S) and (A2 ∪ S, S) have no separation of size less than �. By Theorem 2,
both (A1 ∪ S, S) and (A2 ∪ S, S) are knitted. So there are disjoint connected subgraphs Ci ⊆ A1 ∪ S ’s
and Di ⊆ A2 ∪ S so that Si ⊆ Ci and Si ⊆ Di . Hence we can contract A1 ∪ S into S1, S2, . . . such that
the resulting graph on S is complete. Let G1 be the resulting graph plus A2. Similarly, we can also
contract A2 ∪ S into S1, S2, . . . such that the resulting graph on S is complete (let G2 be the resulting
graph plus A1).

Then χ(G1),χ(G2) � k − 1 by minimality of G . But clearly we can combine the colorings of G1
and G2 to the whole graph G using at most k − 1 colors. This is a contradiction. This completes the
proof of the theorem. �

The rest of the paper is to prove Theorem 2. We will do this in two steps: in the first step (Sec-
tion 3), we will show a graphs under study either is knitted or has a dense subgraph; in the second
step (Section 2), we find a knitted subgraph in the dense subgraph. Note that this approach is very
much similar to the one used by Thomas and Wollan [9].

2. Dense graphs are knitted

In this section, we study when a small dense graph contains a knitted subgraph. This is needed in
our proof of Theorem 2 in Section 3.

To show a small dense graph is k-knitted, we use a result by Faudree et al. [3] on k-ordered
graphs, where a graph is k-ordered if for every k vertices of given order, there is a cycle containing
the k vertices of the given order. It is clear that a k-ordered graph is k-knitted. Throughout the paper,
we will use d(x, H) to denote the number of neighbors (degree) of x in subgraph H of G .

Theorem 4. (See Faudree et al. [3].) For every graph G with order n � 2� � 2, if d(x, G) + d(y, G) � n + 3�−9
2

for every pair of non-adjacent vertices x and y, then G is �-ordered.

Note that for n � 5�, Kostochka and Yu [6] showed that a graph G with minimum degree at least
n+�

2 − 1 is �-ordered. Since we do not know if the minimum degree condition still holds for n < 5�,
we are unable to use this less demanding degree conditions in our proof.

Theorem 5. Let α � 4.5. A graph H with minimum degree δ(H) � α� + 1 and |V (H)| � 2α� contains an
�-knitted subgraph.

Proof of Theorem 5. Assume by contradiction that H is not �-knitted. Then there is a subset S ⊆ V (H)

with |S| = �, and a partition S = ⋃t
i=1 Si such that we cannot find disjoint connected subgraphs

containing Si ’s.
We consider partial (�, t)-knit C = ⋃t

i=1 Ci , which is a subgraph of G in which Si ⊆ Ci but Ci s are
not necessarily connected.

An optimal (�, t)-knit C = ⋃t
i=1 Ci is a partial (�, t)-knit such that

(a) |C | � α�;
(b) the number of components of C is minimized; and
(c) subject to (a) and (b), |C | is minimized.

We observe that the components in C containing exactly one vertex in S consist of one vertex,
and a component with two vertices in S is a path.
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We may assume that S1 ⊆ C1, but C1 is not connected. Then there exists x, y ∈ S1 such that x
and y belong to different components of C1. Note that H − C 
= ∅, since d(x, H − C) = d(x) − |C | �
(α� + 1) − α� = 1.

Now we show that for every u ∈ H − C and for every component P in C with |V (P ) ∩ S| � 2,
d(u, P ) � |V (P ) ∩ S| + 1. We actually will give the following more general statement, which might be
of independent interest.

Lemma 1. Let W be a graph. Let S ′ be a subset of V (W ) with |S ′| � 2, and let F be subtree of W such
that F ⊇ S ′ and all leaves of F belong to S ′ . Let u ∈ W − F , and suppose that d(u, F ) � |S ′| + 2. Then
W [V (F ) ∪ {u}] contains a subtree F0 with u ∈ F0 such that |F0| < |F |, F0 ⊇ S ′ and all leaves of F0 belong
to S ′ .

Proof. Let k = |S ′|. When k = 2, F is a path with both leaves in S ′ , then since d(u, F ) � 4, we can
replace a segment of F by u to get a smaller subtree F0 so that the leaves of F0 belong to S ′ . So let
k � 3.

Now we use induction on |F |. Note that F has at least two leaves, and let u1, u2 ∈ S be two of
them. For i = 1,2, let Pi be maximal paths such that ui ∈ Pi and the subtree F − V (Pi) contains
S ′ − {ui}. Note that P1 ∩ P2 = ∅. For each i, let xi be the vertex in F − Pi which is adjacent (in F ) to
an endpoint of Pi .

Let i = 1 or 2. First assume d(u, Pi) = 0. Then by the induction assumption, W [V (F − Pi) ∪ {u}]
contains a subtree F ′ with u ∈ F ′ such that |F ′| < |F − Pi |, F ′ ⊇ (S ′ − {u′}) ∪ {xi} and all leaves of F ′
belong to (S ′ − {ui}) ∪ {xi}. Adding Pi to F ′ , we obtain a desired tree. Next assume d(u, Pi) = 1. Then
by the induction assumption, W [V (F − Pi) ∪ {u}] contains a subtree F ′ with u ∈ F ′ such that |F ′| <

|F − Pi |, F ′ ⊇ S ′ −{ui} and all leaves of F ′ belong to S ′ −{ui}. Adding Pi to F ′ , we obtain a desired tree.
Thus we may assume d(u, Pi) � 2 for each i = 1,2. Let Pi = ui P i vi v ′

i P i x′
i so that x′

i is adjacent to xi

and vi is the only neighbor of u on ui P i vi . Then |V (v ′
i P i x′

i)| � 1. Now F0 = (F −⋃2
i=1 V (v ′

i P i x′
i))∪{u}

is a subtree (note that k � 3, so F0 is connected) with desired properties. �
Let δ∗ be the minimum degree of H − C . We have the following

Lemma 2. δ∗ � (α − 1.5)�.

Proof. For every u ∈ H − C ,

d(u, H − C) = d(u, H) − d(u, C) � δ(H) − d(u, C) � α� + 1 − d(u, C).

So we just need to prove that d(u, C) � 1.5� for every u ∈ H − C .
Let P j , 1 � j � ci , be the components of Ci in which u has neighbors. If |P j ∩ S| � 2, then by

Lemma 1 we have d(u, P j) � |P j ∩ S| + 1 � 3|P j ∩ S|/2 and, if |P j ∩ S| = 1 then |P j| = 1, and hence
d(u, P j) = |P j ∩ S| � 3|P j ∩ S|/2, which implies

d(u, Ci) =
ci∑

j=1

d(u, P j) �
ci∑

j=1

3|P j ∩ S|/2 � 3|Ci ∩ S|/2.

Therefore d(u, C) = ∑
Ci

d(u, Ci) � 1.5|S| = 1.5�, and the lemma is proven. �
Lemma 3. The subgraph H − C is connected.

Proof. Let H1, . . . , H p with p � 1 be the components of H − C . Then Hi is not �-knitted, thus not
�-ordered. So by Theorem 4, 2δ∗ < |Hi| + 3�−9

2 . Therefore we have

|Hi| > (2α − 4.5)� + 4.5.

If p � 2, then |H| � |C | + |H1| + |H2| > � + 2(2α − 4.5)� + 9, that is, 2α� > (4α − 8)� + 9. So
(8 − 2α)� > 9, a contradiction to α � 4. �
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Lemma 4. |C | � α� − 5.

Proof. For otherwise, |H − C | � 2α� − |C | � 2α� − (α� − 4) = α� + 4. Then 2δ∗ − (|H − C | + 3�−9
2 ) �

(2α − 3)� − (α� + 4) − 3�−9
2 = (α − 4.5)� + 0.5 > 0. By Theorem 4, H − C is �-ordered, thus �-knitted,

a contradiction. �
Let A = N(x) ∩ (H − C) and B = N(y) ∩ (H − C). Furthermore, let A′ = N(A) ∩ (H − C) − A and

B ′ = N(B) ∩ (H − C) − B . Let D = (H − C) − (A ∪ A′ ∪ B ∪ B ′). Then there is no path of length at most
6 from x to y through A ∪ A′ ∪ D ∪ B ′ ∪ B , for otherwise, we may get C ′ by adding this path to C .
Note that C ′ has less components than C , and |C ′| � |C | + 5 � (α� − 5) + 5 = α�, a contradiction to
the assumption that C is optimal.

Take u ∈ D − N(A′), then u has no neighbors in A′ ∪ A. Take v ∈ A, then every pair of u, v, y
has no common neighbors in H − C . Thus |H| � d(y) + d(u, H − C) + d(v, H − C) � δ(H) + 2δ∗ >

α� + (2α − 3)� = (3α − 3)�, and it follows that 2α� > (3α − 3)�, or α < 3, a contradiction.

3. Proof of Theorem 2

We first introduce some notations.

Definition 2. A separation (A, B) of (G, S) is rigid if (G[B], A ∩ B) is knitted.

For a set H ⊆ V (G), let ρ(H) be the number of edges with at least one endpoint in H .

Definition 3. Let G be a graph and S ⊆ V (G), and α > 1 be a real number. The pair (G, S) is α�-
massed if

(i) ρ(V (G) − S) > α�|V (G) − S| − 1, and
(ii) every separation (A, B) of (G, S) of order at most |S| − 1 satisfies ρ(B − A) � α�|B − A|.

Definition 4. Let G be a graph and S ⊆ V (G), and let α > 1 be a real number. The pair (G, S) is
(α, �)-minimal if

1. (G, S) is α�-massed,
2. |S| � � and (G, S) is not knitted,
3. subject to above two, |V (G)| is minimum,
4. subject to above three, ρ(G − S) is minimum, and
5. subject to above four, the number of edges of G with both ends in S is maximum.

Theorem 6. Let � � 1 be an integer and α � 2 be a real number. Let G be a graph and S ⊆ V (G) such that
(G, S) is (α, �)-minimal. Then G has no rigid separation of order at most |S|, and G has a subgraph H with
|V (H)| � 2α� and minimum degree at least α� + 1.

With Theorem 6 and Theorem 5, we can actually obtain the following result, which is a little
stronger than Theorem 2.

Theorem 7. Let � be an integer. Let G be a graph and S ⊆ V (G) be an �-subset such that (G, S) is (4.5, �)-
massed. Then (G, S) is knitted.

Proof. Suppose that some (4.5, �)-massed graph is not knitted and take such a graph G so that (G, S)

is (4.5, �)-minimal. By Theorems 6 and 5, the graph G has no rigid separation of order at most � and
has an �-knitted subgraph K .
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If there are |S| = � disjoint paths from S to K (we may suppose that each path uses one vertex
in K ), then for every partition of S , there is a corresponding partition of the endpoints of the paths
in K ; since K is knitted, there are disjoint connected subgraphs in K containing the parts of the
endpoints, thus we have disjoint connected subgraph containing the parts of S .

If there is no |S| disjoint paths from S to K , then there is separation (A, B) with S ⊆ A, K ⊆ B of
order at most �−1. We may assume (A, B) is a separation with smallest order. Then there are |A ∩ B|
disjoint paths from A ∩ B to K . Similar to the above, for every partition of A ∩ B , we have disjoint
connected subgraph containing the parts of A ∩ B . So G[B, A ∩ B] is knitted, that is, (A, B) is a rigid
separation of order at most � − 1, a contradiction. �
Proof of Theorem 6. We prove this theorem in the following three claims.

Claim 1. G has no rigid separation of order at most |S|.

Proof. For otherwise, take a rigid separation (A, B) with minimum A.
We first assume that |A ∩ B| < |S|. Let G∗[A] be the resulting graph from G[A] by adding all miss-

ing edges in A ∩ B . Consider (G∗[A], S). If it also satisfies both (i) and (ii), then (G∗[A], S) is knitted,
and a knit in G∗[A] can be easily converted into a knit in G since (A, B) is a rigid separation. Since
G is α�-massed, ρ(B − A) � α�|B − A|, hence ρ(A − S) > α�|A − S| − (α − 0.5)�2. So it satisfies (i),
and thus does not satisfy (ii).

Let (A′, B ′) be a separation of G∗[A] such that S ⊆ A′ and B ′ is minimal. If A ∩ B ⊆ A′ , then
(A′ ∪ B, B ′) is a separation in G violating (ii). So A ∩ B � A′ . Since A ∩ B forms a cliques, A ∩ B ⊆
B ′ . Consider (G∗[B ′], A′ ∩ B ′). The minimality of B ′ implies that it satisfies (ii), and ρ(B ′ − A′) >

α�|B ′ − A′| > α�|B ′ − A′| − 1 means that it satisfies (i) as well. So (G∗[B ′], A′ ∩ B ′) is knitted. Then
(G∗[B ∪ B ′], A′ ∩ B ′) is knitted, which means that A′ ∩ B ′ is a rigid separation of (G, S), a contradiction
to the minimality of A.

Now assume that |A ∩ B| = |S|. If there exist |S| disjoint paths from S to A ∩ B , then the paths
together with the rigidity of (A, B) show that (G, S) is knitted, a contradiction. So there is a separation
(A′′, B ′′) of (G[A], S) of order less than |S| with A ∩ B ⊆ B ′′ . Choose such a separation with minimum
|A′′ ∩ B ′′|. Then there are |A′′ ∩ B ′′| disjoint paths from A′′ ∩ B ′′ to A ∩ B , from the rigidity of (A, B)

we have (A′′, B ∪ B ′′) is a rigid separation of (G, S) with |A′′| < |A|, a contradiction to the minimality
of A. �
Claim 2. For every edge uv with v /∈ S, the vertices u and v have at least α� common neighbors.

Proof. Consider the graph G ′ = G/uv , the resulting graph from G by contradicting the edge uv . If
(G ′, S) is knitted, then (G, S) is knitted. So (G ′, S) violates (i) or (ii).

If (G ′, S) violates (i), then

ρ
(
G ′ − S

)
� α�

∣∣G ′ − S
∣∣ − 1 = α�|G − S| − 1 − α� < ρ(G − S) − α�.

Thus u and v have at least α� common neighbors, which gives the difference of sizes of G and G ′ .
So we may assume that (G ′, S) violates (ii). Let (A′, B ′) be a separation of G ′ violating (ii) with B ′

minimal. By minimality, the pair (G ′[B ′], A′ ∩ B ′) is knitted. So (A′, B ′) is a rigid separation of (G ′, S)

(of order at most |S| − 1). Note that the separation induces a separation (A, B) in G . If {u, v} � A ∩ B ,
then (A, B) is a rigid separation of (G, S) of order at most |S| − 1, which a contradiction to Claim 1.
So we assume that u, v ∈ A ∩ B . Then by minimality of B ′ , (G[B], A ∩ B) is α�-massed thus knitted,
so (A, B) is a rigid separation of size at most |A′ ∩ B ′| + 1 � |S|, a contradiction to Claim 1 again. �
Claim 3. Let δ′ be the minimum degree in G among the vertices in V (G) − S. Then α� + 1 � δ′ < 2α�.

Proof. We only need to prove that δ′ < 2α�. Take an edge e = uv in G , and consider G1 = G −e. Then
G1 fails (i) or (ii).
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If G1 fails (ii), then (G − e, S) contains a separation (A, B) with |A ∩ B| < |S|. It follows that
u ∈ A − B and v ∈ B − A, lest (A, B) is a separation in (G, S) violating (ii). Then |N(u) ∩ N(v)| �
|A ∩ B| < |S| � � < α�, a contradiction to Claim 2. So G1 fails (i), that is, ρ(G − S) � α�|V (G)− S|− 1.

If δ′ � 2α�, then

2
(
α�

∣∣V (G) − S
∣∣ − 1

)
� 2ρ(G − S) �

∑

v∈V (G)−S

deg(v) � 2α�
∣∣V (G) − S

∣∣,

a contradiction. �
Now let v ∈ V (G) − S be a vertex with degree δ′ in G . Let H be the graph induced by v and its

neighbors. Then H has at most 2α� vertices, and H has minimum degree at least α� + 1.
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