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Abstract

The strong chromatic index of a graph G, denoted by χ′
s(G), is the least number of colors

needed to edge-color G properly so that every path of length 3 uses three different colors. In

this paper, we prove that if G is a graph with ∆(G) = 4 and maximum average degree less than
61
18 (resp. 72 , 18

5 , 15
4 , 51

13 ), then χ′
s(G) ≤ 16 (resp.17, 18, 19, 20), which improves the results of

Bensmail, Bonamy, and Hocquard (2015).

1 Introduction

A strong edge-coloring of a graph G is a proper edge-coloring of G such that the edges of any path

of length 3 use three different colors. It follows that each color class of a strong edge-coloring is

an induced matching. The strong chromatic index of a graph G, denoted by χ′s(G), is the smallest

integer k such that G can be strongly edge-colored with k colors. The concept of strong edge-

coloring was introduced by Fouquet and Jolivet in [8, 9] and can be used to model conflict-free

channel assignment in radio networks in [16,17].

In 1985, Erdős and Nešetřil proposed the following interesting conjecture.

Conjecture 1.1 ( [7]) For a graph G with maximum degree ∆,

χ′s(G) ≤

{
5
4∆2, if ∆ is even;
1
4(5∆2 − 2∆ + 1), if ∆ is odd.

When ∆ ≤ 3, Conjecture 1.1 has been verified by Andersen [1], and independently by Horák,

Qing, and Trotter [13]. When ∆ is sufficiently large, Molloy and Reed in [15] proved that χ′s(G) ≤
1.998∆(G)2, using probabilistic techniques. This bound is improved to 1.93∆2 by Bruhn and

Joos [3], and very recently, is further improved to 1.835∆2 by Bonamy, Perrett, and Postle [4].

The maximum average degree of a graph G, mad(G), is defined to be the maximum average

degree over all subgraphs of G. Hocquard et al. [11, 12] and DeOrsey et al. [6] studied the strong

chromatic index of subcubic graphs with bounded maximum average degree.

We study graphs with maximum degree 4, which are conjectured to be colorable with at most

20 colors in Conjecture 1.1. Cranston [5] showed that 22 colours suffice, which is improved to
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1



21 colours very recently by Huang, Santana and the third author [14]. However, it is still not

clear if 20 colours suffice even if the minimum degree of such graphs is 3. Bensmail, Bonamy, and

Hocquard [2] studied the strong chromic index of graphs with maximum degree four and bounded

maximum average degrees.

Theorem 1.2 (Bensmail, Bonamy, and Hocquard [2]) For every graph G with ∆ = 4,

(1) If mad(G) < 16
5 , then χ′s(G) ≤ 16.

(2) If mad(G) < 10
3 , then χ′s(G) ≤ 17.

(3) If mad(G) < 17
5 , then χ′s(G) ≤ 18.

(4) If mad(G) < 18
5 , then χ′s(G) ≤ 19.

(5) If mad(G) < 19
5 , then χ′s(G) ≤ 20.

In this paper, we improve the results from [2] as follows.

Theorem 1.3 For every graph G with ∆ = 4, each of the following holds.

(1) If mad(G) < 61
18 , then χ′s(G) ≤ 16.

(2) If mad(G) < 7
2 , then χ′s(G) ≤ 17.

(3) If mad(G) < 18
5 , then χ′s(G) ≤ 18.

(4) If mad(G) < 15
4 , then χ′s(G) ≤ 19.

(5) If mad(G) < 51
13 , then χ′s(G) ≤ 20.

From the proof of Theorem 1.3(5), we obtain the following corollary, which implies Conjec-

ture 1.1 is true in some spacial cases.

Corollary 1.4 For every graph G with ∆ = 4, if there are two 3-vertices whose distance is at most

4, then χ′s(G) ≤ 20.

We end this section with notation and terminology. Let G = (V (G), E(G)) be a graph with

vertex set V (G) and edge set E(G), and let dG(v) denote the degree of a vertex v in a graph G.

We use V , E and d(v) for V (G), E(G) and dG(v), respectively, if it is understood from the context.

Denote by d(u, v) the distance between vertices u and v of G. A vertex is a k-vertex (k−-vertex) if it

is of degree k (at most k). Similarly, a neighbor of a vertex v is a k-neighbor of v if it is of degree k.

A 4-vertex is special if it is adjacent to a 2-vertex. A 3-vertex is a 3k-vertex if it is adjacent to k 3-

vertices, where k = 0, 1, 2. A 4k-vertex is a 4-vertex adjacent to exactly k 3-vertices. Denote byN(v)

the neighborhood of the vertex v, let Ni(v) = {u ∈ V (G) : d(u, v) = i} for i ≥ 1. For simplicity,

N0(v) = {v} and N1(v) = N(v). Let Li(v) = ∪ij=0Nj(v) and D3(G) = {v ∈ V (G) : d(v) = 3}. For

a graph G = (V,E) and E′ ⊆ E, G has a partial edge-coloring if G[E′] has a strong edge-coloring,

where G[E′] is the graph with vertex set V and edge set E′.

In the proof of Theorem 1.3, the well known result of Hall [10] is applied in terms of systems of

distinct representatives.

Theorem 1.5 ( [10]) Let A1, . . . , An be n subsets of a set U . A system of distinct representa-

tives of {A1, . . . , An} exists if and only if for all k, 1 ≤ k ≤ n and every subcollection of size k,

{Ai1 , . . . , Aik}, we have |Ai1 ∪ . . . ∪Aik | ≥ k.
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2 Proof of Theorem 1.3

Let H be a counterexample to Theorem 1.3 with |V (H)|+ |E(H)| minimized. That is, for some

(m, k) ∈ {(61

18
, 16), (

7

2
, 17), (

18

5
, 18), (

15

4
, 19), (

51

13
, 20)}

we have mad(H) < m and χ′s(H) > k.

By the minimality of H, χ′s(H − e) ≤ k for each e ∈ E(H), and we may assume that H is

connected. Denote by [k] = {1, 2, . . . , k} the set of colors. If e = uv is an uncolored edge in a

partial coloring of H, then let LH(e) be the set of colors that is used on the edges incident to a

vertex in NH(u) ∪ NH(v), and let L′H(e) = [k] \ LH(e). We write L(e) and L′(e) for LH(e) and

L′H(e), respectively, if it is clear from the context. We now establish some properties of H.

Lemma 2.1 Let x be a vertex of H with d(x) = d. If the edges incident to x can be ordered as

xy1, xy2, . . . , xyd such that in a partial k-coloring of H−x, |L(xyi)| ≤ k−i, then the partial coloring

can be extended to H. In particular,

(a) There is no 1-vertex in H, an if k ≥ 17, then there is no 2-vertex in H.

(b) Each 2-vertex x in H has two 4-neighbors, each of which is adjacent to three 4-vertices.

(c) If d(x) = 3 and k ≥ 16, 17, 19, then x is adjacent to at least one, two, and three 4-vertices,

respectively.

(d) If d(x) = 4 and if k ≥ 18, 19, 20, then x is adjacent to at most three, two and one 3-vertices,

respectively.

Proof. We color xyd, xyd1, . . . , xy1 in order and obtain a strong-edge coloring of H. For the “in

particular” part, let x be d(x) = d and the neighbors of x are y1, y2, . . . , yd with d(y1) ≥ d(y2) ≤
. . . ≥ d(yd). Then in each case, H − x has a strong k-edge-coloring.

(a) When d(x) = 1, |L(xy)| ≥ k − 12 ≥ 4, so xy can be colored. When d(x) = 2, then

|L(xy1)|, |L(xy2)| ≥ k − 15 ≥ 2 if k ≥ 17, so there is no 2-vertex if k ≥ 17.

(b) As d(x) = 2, |L(xy1)|, |L(xy2)| ≥ k − 15 ≥ 1, with |L(xy1)| = |L(xy2)| = 1 only if both y1
and y2 are 4-vertices and adjacent to three 4-neighbors. So if y1 or y2 is not a 4-vertex or one of

them is not adjacent to three 4-neighbors, we can color xy1 and xy2.

(c) Note that d(x) = 3 and d(y1) ≥ d(y2) ≥ d(y3). If x has three 3-neighbors and k ≥ 16,

then |L(xyi)| ≤ 12 ≤ k − 4; if x has two 3-neighbors and k ≥ 17, then |L(xy1)| ≤ 16 ≤ k − 1 and

|L(xy2)|, |L(xy3)| ≤ 13 ≤ k−4; if x has one 3-neighbors and k ≥ 19, then |L(xy1)|, |L(xy2)| ≤ 17 ≤
k− 2 and |L(xy3)| ≤ 14 ≤ k− 5. So by the main statement, the coloring of H − x can be extended

to H in each of the cases.

(d) Note that d(x) = 4 and d(y1) ≥ d(y2) ≥ d(y3) ≥ d(xy4). If x has four 3-neighbors and

k ≥ 18, then |L(xyi)| ≤ 14 ≤ k−4; if x has three 3-neighbors and k ≥ 19, then |L(xy1)| ≤ 18 ≤ k−1

and |L(xyi)| ≤ 15 ≤ k − 4 for i ∈ {2, 3, 4}. So by the main statement, the coloring of H − x can

be extended to H in each of the cases. When k ≥ 20 and x has two 3-neighbors, we uncolor y4w,

where w 6= x is a neighbor of y4. Then |L′(xy1)|, |L′(xy1)| ≥ 2 and |L′(xy3)|, |L′(xy4)| ≥ 5 and

|L′(y4w)| ≥ 4. So we can color xy1, xy2, y4w, xy3, xy4 in the order and obtain a coloring of H.

Let the initial charge of x ∈ V (H) be ω(x) = d(x) −m. It follows from the hypothesis that∑
x∈V (H) ω(x) < 0. We redistribute the weights using the following discharging rules:
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(R1) When k = 16, each 4-vertex v gives 4−m to its unique 2-neighbor if it has one. Otherwise,

it gives 3m−10
6 to the 2-vertices in L2(v). It gives m − 3 to each 32-neighbor, m−3

2 to each

31-neighbor, and m−3
3 to each 30-neighbor.

(R2) When k ≥ 17, each 4-vertex u gives 4−m
l to each of the l 3-vertices in Li+1(u)∩D3(G) when

Li(u) ∩D3(G) is empty, where i ≥ 0.

For each vertex x ∈ V (H), let ω∗(x) be the final weight of x after the discharging process. If

each vertex x ∈ V (H) has ω∗(x) ≥ 0, then

0 ≤
∑

x∈V (H)

ω∗(x) =
∑

x∈V (H)

ω(x) < 0.

This is a contradiction. So there must be some vertex, say x0 ∈ V (H), with ω∗(x0) < 0.

Lemma 2.2 If k ≥ 17, then x0 is a 3-vertex. If k = 16, then x0 is a 4-vertex.

Proof. If k ≥ 17, then there is no 2-vertex by Lemma 2.1 (a). By (R2), ω∗(x) = 0 if d(x) = 4. So,

x0 is a 3-vertex.

Let k = 16. By Lemmas 2.1 (a) and 2.1 (b), each 2-vertex x is adjacent to two 4-vertices in N(x)

and adjacent to six 4-vertices in N2(x)\N(x). By (R1), ω∗(x) = 2− 61
18+2(4− 61

18)+6·(3· 6118−10)/6 =

0. Assume that x0 is a 3-vertex. If x0 is a 32-vertex, by (R1), ω(x0) = 3 − 61
18 + 61

18 − 3 = 0, a

contradiction; if x0 is a 31-vertex, then by (R1), ω(x0) = 3− 61
18 +2 · (6118 −3)/2 = 0, a contradiction;

if x0 is a 30-vertex, then by (R1) ω(x0) = 3− 61
18 + 3 · (6118 − 3)/3 = 0, a contradiction; Thus, x0 is

not a 3-vertex. So, x0 is a 4-vertex.

2.1 Case 1: (m, k) = (61
18
, 16)

Lemma 2.3 If v is a 32-vertex, then its 4-neighbor is adjacent to three 4-vertices.

Proof. Suppose to the contrary that a 3-vertex v is adjacent to two 3-vertices u and w and a

4-vertex t that is adjacent to a 3-vertex t1. By the minimality of H, H ′ = H − v has a strong

edge-coloring with at most sixteen colors. Observe that |L′(uv)| ≥ 3, |L′(vw)| ≥ 3 and |L′(vt)| ≥ 1.

Thus, we color vt, uv and vw in turn to obtain a strong edge-coloring of H, a contradiction.

u

1
w

2
w

p v

w

1
u

2
u

t

Figure 1: A 4-vertex v adjacent to four 3-vertices

Lemma 2.4 A 44-vertex v is adjacent to at most one 31-vertex.

Proof. Suppose otherwise that there exists a 44-vertex v adjacent to two 31-vertices w and u. Let

d(u1) = d(w1) = 3. We use notations in Figure 1. By the minimality of H, H ′ = H − v has a

strong edge-coloring with at most 16 colors.
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We claim that w1 6= u1. For otherwise, |L′(uv)| ≥ 4, |L′(vw)| ≥ 4, |L′(vp)| ≥ 2 and |L′(vt)| ≥ 2.

Thus, we color vt, vp, vw and vu in turn to obtain a strong edge-coloring of H, a contradiction.

We also claim that u1w1 /∈ E(H). Suppose otherwise. We uncolor edges uu1 and ww1. Then

|L′(uv)| ≥ 5, |L′(vw)| ≥ 5, |L′(vt)| ≥ 4, |L′(vp)| ≥ 4, |L′(uu1)| ≥ 6, |L′(ww1)| ≥ 6. Then we color

edges vt, vp, vw, uv, uu1 and ww1 in turn to obtain a strong edge-coloring of H, a contradiction.

Now, we uncolor edges uu1 and ww1. Then |L′(uv)| ≥ 5, |L′(vw)| ≥ 5, |L′(vt)| ≥ 4, |L′(vp)| ≥ 4,

|L′(uu1)| ≥ 4, |L′(ww1)| ≥ 4. If L′(uu1) ∩L′(ww1) 6= ∅, then we color edges uu1, ww1 with a same

color and then color vt, vp, vw and uv in turn. If L′(uu1)∩L′(ww1) = ∅, then |L′(uu1)∪L′(ww1)| ≥
8. Let T = {uv, vw, vt, vp, uu1, ww1}, for any S ⊆ T , we have | ∪e∈S L∗(e)| ≥ |S|. By Theorem 1.5,

we can assign a distinct color to each uncolored edge. Thus, we obtain a strong edge-coloring of

H, a contradiction.
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Figure 2: The distance between two 2-vertices v and u is 3

Lemma 2.5 The distance between two 2-vertices is at least 4.

Proof. By Lemma 2.1 (b), the distance between every two 2-vertices is at least 3. Suppose

otherwise that there exist two 2-vertices u and v with d(u, v) = 3. We shall use the notations in

Figure 2. By the minimality of H, H ′ = H−{v, u} has a strong edge-coloring with at most sixteen

colors. One can observe that |L′(wv)| ≥ 1, |L′(vx)| ≥ 2, |L′(ut)| ≥ 1, |L′(yu)| ≥ 2.

We first claim that |L′(vx)| = |L′(uy)| = 2. By symmetry, suppose otherwise that |L′(vx)| ≥ 3.

In this case, we can color wv, ut, uy and vx in turn and we obtain a desired strong edge-coloring

with sixteen colors, a contradiction.

Next, we claim that |L′(wv)| = |L′(ut)| = 1. By symmetry, suppose otherwise that |L′(wv)| ≥ 2.

Thus, we can color ut, uy, vx and wv in turn and we obtain a desired strong edge-coloring with

sixteen colors, a contradiction.

Finally, we claim that L′(wv) ⊆ L′(vx) and L′(ut) ⊆ L′(uy). By symmetry, suppose otherwise

that if L′(wv) * L′(vx). In this case, we can color ut, uy, vx and wv in turn and we obtain a

desired strong edge-coloring with sixteen colors, a contradiction.

We distinguish the following two cases:

Case 1. L′(vx) 6= L′(uy).

If L′(vx) ∩ L′(uy) = ∅, then we can color vw, ut, vx and uy in turn and we obtain a desired

strong edge-coloring with sixteen colors, a contradiction.

Thus, we assume that L′(vx) ∩ L′(uy) 6= ∅. Since L′(vx) 6= L′(uy), we assume, without loss of

generality, that L′(vx) = {1, 2} and L′(uy) = {1, 3}. If L′(wv) = L′(ut) = {1}, we can color wv

and ut with 1, and color vx and uy with 2 and 3, respectively. It follows that we obtain a desired

strong edge-coloring with sixteen colors, a contradiction. So, we assume that L′(wv) 6= L′(ut).

By symmetry we may assume that either L′(wv) = {1} and L′(ut) = {3} or L′(wv) = {2} and
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L′(ut) = {3}. In the former case, we can color wv and yu with 1, and color vx and ut with 2 and

3, respectively. So, we obtain a desired strong edge-coloring with sixteen colors, a contradiction.

In the latter case, we assume, without loss of generality, that c(xy) = 4. Note that 4 /∈
{c(ww1), c(ww2), c(ww3), c(w1w4), c(w1w5), c(w1w6), c(w2w7), c(w2w8), c(w2w9), c(w3w10), c(w3w11),

c(w3w12)}, for otherwise we obtain |L′(wv)| ≥ 2, contrary to our claim that |L′(wv)| = 1. Similarly,

4 /∈ {c(tt1), c(tt2), c(tt3), c(t1t4), c(t1t5), c(t1t6), c(t2t7), c(t2t8), c(t2t9), c(t3t10), c(t3t11), c(t3t12)}. Since

L′(vx) = {1, 2} and L′(uy) = {1, 3}, 1 /∈ {c(xx1), c(xx2), c(x1x3), c(x1x4), c(x1x5), c(x2x6), c(x2x7),
c(x2x8), c(yy1), c(yy2), c(y1y3), c(y1y4), c(y1y5), c(y2y6), c(y2y7), c(y2y8)}. Thus, we can recolor xy

with 1 and color wv, ut with the same color 4, color vx, yu with with 2 and 3, respectively, and

we obtain a desired strong edge-coloring with sixteen colors, a contradiction.

Case 2. L′(vx) = L′(uy).

In this case, we assume, without loss of generality, that L′(vx) = L′(uy) = {1, 2}. By symmetry,

we assume that either L′(wv) = {1} and L′(ut) = {2} or L′(wv) = L′(ut) = {1}. In the former

case, we can color wv, uy with the same color 1 and color vx, ut with the same color 2. So, we

obtain a desired strong edge-coloring with sixteen colors, a contradiction.

In the latter case, we assume, without loss of generality, that c(xy) = 3. Note that 3 /∈
{c(ww1), c(ww2), c(ww3), c(w1w4), c(w1w5), c(w1w6), c(w2w7), c(w2w8), c(w2w9), c(w3w10), c(w3w11),

c(w3w12)}, for otherwise, we obtain that |L′(wv)| ≥ 2, contrary to our claim that |L′(wv)| = 1. Sim-

ilarly, 3 /∈ {c(tt1), c(tt2), c(tt3), c(t1t4), c(t1t5), c(t1t6), c(t2t7), c(t2t8), c(t2t9), c(t3t10), c(t3t11), c(t3t12)}.
Since L′(vx) = {1, 2} = L′(uy) = {1, 2}, 2 /∈ {c(xx1), c(xx2), c(x1x3), c(x1x4), c(x1x5), c(x2x6),
c(x2x7), c(x2x8), c(yy1), c(yy2), c(y1y3), c(y1y4), c(y1y5), c(y2y6), c(y2y7), c(y2y8)}. Thus, we can re-

color xy with 2 and color both wv and uy with 3, color both vx and ut with 1. Therefore, we

obtain a desired strong edge-coloring with sixteen colors, a contradiction.

Consider the final charge of x0. By Lemma 2.2, x0 is a 4-vertex.

If x0 is adjacent to a 2-vertex, then by Lemma 2.1 (b), the other three neighbors are all 4-

vertices. By (R1), ω∗(x0) ≥ 4− 61
18 − (4− 61

18) = 0, a contradiction. Thus, x0 has no 2-neighbor. By

Lemma 2.5, each 4-neighbor of x0 (if any) is adjacent to at most one 2-vertex.

If x0 is adjacent to a 32-vertex, then by Lemma 2.3, the other three neighbors are 4-vertices. By

(R1), ω∗(x0) ≥ 4−61
18−(6118−3)−3·(3·6118−10)/6 = 5

36 > 0, a contradiction. Thus, x0 is not adjacent to

any 32-neighbor. Assume that x0 is adjacent to a 31-vertex. If x0 is a 44-vertex, then by Lemma 2.4,

x0 is adjacent to at most one 31-vertex. By (R1), ω∗(x0) ≥ 4− 61
18−(6118−3)/2−3·(6118−3)/3 = 1

36 > 0.

If x0 is not a 44-vertex, then by (R1), ω∗(x0) ≥ 4 − 61
18 − 3 · (6118 − 3)/2 − (3 · 61

18 − 10)/6 =

(61 − 18 · 6118)/6 = 0, a contradiction. Thus, x0 is adjacent to only 30-neighbors or 4-vertices. By

(R1), ω∗(x0) ≥ 4 − 61
18 − 4 · (6118 − 3)/3 = (24 − 7 · 6118)/3 > 0, contrary to the assumption that

ω∗(x0) < 0.

2.2 Case 2: (m, k) = (7/2, 17)

Lemma 2.6 H does not contain the following three configurations:

(1) A 31-vertex v adjacent to a 43-vertex u (see Figure 3).
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Figure 3: A 31-vertex v adjacent to a 43-vertex u

(2) A 30-vertex v adjacent to two 44-vertices u, w and one 43-vertex t (see Figure 4).

(3) A 30-vertex v adjacent to one 44-vertex u and two 43-vertices w, t (see Figure 5).

Proof. (1) Suppose otherwise that there exists a 31-vertex v that is adjacent to a 43-vertex u.

Let t, u1 and u2 be 3-vertices and let w and u3 be 4-vertices. we use the notations in Figure 3.

By minimality of H, H ′ = H − {u, v} has a strong edge-coloring with at most seventeen colors.

Observe that |L′(uv)| ≥ 5, |L′(vw)| ≥ 3, |L′(vt)| ≥ 6, |L′(uu1)| ≥ 4, |L′(uu2)| ≥ 4 and |L′(uu3)| ≥ 1.

Thus, we color uu3, vw, uu1, uu2,uv and vt in turn and obtain a desired strong edge-coloring with

seventeen colors, a contradiction.
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Figure 4: A 30-vertex v adjacent to two 44-vertices and one 43-vertex

(2) Suppose otherwise that there exists a 30-vertex v adjacent to two 44-vertices u, w and one

43-vertex t. We shall use the notations Figure 4. Let H ′ = H − {v}. By the minimality of H, H ′

has a strong edge-coloring with at most seventeen colors. Observe that |L′(uv)| ≥ 2, |L′(vw)| ≥ 2,

|L′(vt)| ≥ 1. Note that there are 3 uncolored edges. If we can assign a distinct color to uncolored

edge, then we obtain a desired strong edge-coloring with seventeen colors, a contradiction.

Thus, assume that we cannot assign three distinct colors to these three uncolored edges. By

Theorem 1.5, L′(vt) ⊆ L′(uv) = L′(vw) and |L′(uv)| = 2. Without loss of generality, we consider

the following two cases.

Case 1. L′(vt) = {1}, L′(uv) = L′(vw) = {1, 2}.
Since L′(vt) = {1}, c(tt1), c(tt2), c(tt3), c(uu1), c(uu2), c(uu3), c(ww1), c(ww2) and c(ww3) are

distinct. Suppose otherwise. We obtain |L′(uv)| ≥ 3, |L′(vw)| ≥ 3, |L′(vt)| ≥ 2. In this case,

we can color vt, uv and vw and obtain a desired strong edge-coloring with seventeen colors, a

contradiction. Thus, since L′(vt) = {1} and L′(uv) = L′(vw) = {1, 2}, we may assume, without loss

of generality, that c(tt1) = 3, c(tt2) = 4, c(tt3) = 5, c(uu1) = 6, c(uu2) = 7, c(uu3) = 8, c(ww1) = 9,

c(ww2) = 10, c(ww3) = 11, c(t1t4) = 12, c(t1t5) = 13, c(t1t6) = 14, c(t2t7) = 15, c(t2t8) = 16,

c(t3t9) = 17, c(t3t10) = 2, c(u1u4) = 12, c(u1u5) = 13, c(u2x) = 14, c(u2y) = 15, c(u3u6) = 16,
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c(u3u7) = 17, c(w1w4) = 12, c(w1w5) = 13, c(w2r) = 14, c(w2s) = 15, c(w3w6) = 16, c(w3w7) =

17. This implies that {c(xx1), c(xx2), c(xx3), c(yy1), c(yy2), c(yy3)} = {3, 4, 5, 9, 10, 11}. Suppose

otherwise. We can pick a color α∈ {3, 4, 5, 9, 10, 11} \ {c(xx1), c(xx2), c(xx3), c(yy1), c(yy2), c(yy3)},
recolor uu2 with α and then we can color uv with 7, vw with 2, vt with 1. So, we obtain a

desired strong edge-coloring with seventeen colors, a contradiction. Similarly, we can prove that

{c(rr1), c(rr2), c(rr3), c(ss1), c(ss2), c(ss3)} = {3, 4, 5, 6, 7, 8}. Therefore, we can recolor both uu2
and ww2 with 2, then color uv with 7, vw with 10, vt with 1. Thus, we obtain a desired strong

edge-coloring with seventeen colors, a contradiction.

Case 2. L′(vt) = L′(uv) = L′(vw) = {1, 2}.
Since L′(vt) = L′(uv) = L′(vw) = {1, 2}, c(tt1), c(tt2), c(tt3), c(uu1), c(uu2), c(uu3), c(ww1),

c(ww2) and c(ww3) are distinct. We assume, without loss of generality, that c(uu1) = 3, c(uu2) =

4, c(uu3) = 5, c(ww1) = 6, c(ww2) = 7, c(ww3) = 8, c(tt1) = 9, c(tt2) = 10, c(tt3) = 11,

c(u1u4) = 12, c(u1u5) = 13, c(u2x) = 14, c(u2y) = 15, c(u3u6) = 16, c(u3u7) = 17, c(w1w4) = 12,

c(w1w5) = 13, c(w2r) = 14, c(w2s) = 15, c(w3w6) = 16, c(w3w7) = 17, c(t1t4) = 12, c(t1t5) =

13, c(t1t6) = 14, c(t2t7) = 15, c(t2t8) = 16, c(t3t9) = 17. Since L′(vt) = {1, 2}, c(t3t10) ∈
{3, 4, 5, 6, 7, 8, 12, 13, 14, 15, 16}. This implies that {c(xx1), c(xx2), c(xx3), c(yy1), c(yy2), c(yy3)} =

{6, 7, 8, 9, 10, 11}, for otherwise we can pick a color α∈ {6, 7, 8, 9, 10, 11} \ {c(xx1), c(xx2), c(xx3),
c(yy1), c(yy2), c(yy3)} and recolor uu2 with α, then we can color uv with 4, vw with 2, vt with

1. So, we obtain a desired strong edge-coloring with seventeen colors, a contradiction. Similarly,

{c(rr1), c(rr2), c(rr3), c(ss1), c(ss2), c(ss3)} = {3, 4, 5, 9, 10, 11}. Therefore, we can recolor both uu2
and ww2 with 2, then we can color uv with 4, vw with 7, vt with 1. Thus, we obtain a desired

strong edge-coloring with seventeen colors, a contradiction.

u

1
u

2
u

3
u

v

w

1
w

2
w

3
w

t

Figure 5: A 30-vertex v adjacent to one 44-vertex and two 43-vertices

(3) Suppose otherwise that a 30-vertex v is adjacent to one 44-vertex u and two 43-vertices w

and t. Let each of u1, u2, u3, w1 and w2 be a 3-vertex and w3 is 4-vertex. We use the notations in

Figure 5. By the minimality of H, H ′ = H − v has a strong edge-coloring.

We claim that ui 6= wj , where i = 1, 2, 3 and j = 1, 2. For otherwise, |L′(uv)| ≥ 3, |L′(vt)| ≥ 1,

|L′(vw)| ≥ 2, we color vt, vw, and vu in turn to obtain a strong edge-coloring of H, a contradiction.

By (1), a 31-vertex is not adjacent to a 43-vertex. Thus, u1w1 /∈ E(H).

Now, we erased the colors of edges uu1, ww1. Then |L′(uv)| ≥ 4, |L′(vw)| ≥ 3, |L′(vt)| ≥ 3,

|L′(uu1)| ≥ 3, |L′(ww1)| ≥ 2. If L′(uu1)∩L′(ww1) 6= ∅, then we color edges uu1, ww1 with the same

color and then color vt, vw, uv in turn. Thus, we obtain a strong edge-coloring ofH, a contradiction.

If L′(uu1) ∩ L′(ww1) = ∅, then |L′(uu1) ∪ L′(ww1)| ≥ 5. Let T = {uv, vw, vt, uu1, ww1}, for any

S ⊆ T , we have | ∪e∈S L′(e)| ≥ |S|. By Theorem 1.5, we can assign a distinct color to uncolored

edge. Thus, we obtain a strong edge-coloring of H, a contradiction.

Consider the final charge of x0. By Lemma 2.2, x0 is a 3-vertex. By Lemma 2.1 (c), x0 is

adjacent to at least two 4-vertices.
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If x0 is a 31-vertex, then x0 is not adjacent to a 43-vertex by Lemma 2.6(1). Thus, ω∗(x0) ≥
3− 7

2 +2·(4− 7
2)/2 = 7−2· 72 = 0. Thus, we assume that x0 is a 30-vertex. In this case, Lemma 2.6(2)

implies that x0 is adjacent to at most two 44-vertices. If x0 is adjacent to two 44-vertices, then x0
is not adjacent to 43-vertices by Lemma 2.6 (2). Thus, ω∗(x0) ≥ 3− 7

2 + 2 · (4− 7
2)/4 + (4− 7

2)/2 =

7 − 2 · 72 ≥ 0. If x0 is adjacent to one 44-vertex, then x0 is not adjacent to two 43-vertices by

Lemma 2.6(3). Thus, ω∗(x0) ≥ 3− 7
2 + (4− 7

2)/4 + (4− 7
2)/3 + (4− 7

2)/2 = 22/3− 25
12 ·

7
2 = 1

24 > 0.

If v is not adjacent to 44-vertices, then ω∗(v) ≥ 3− 7
2 + 3 · (4− 7

2)/3 = 7− 2 · 72 = 0.

2.3 Case 3: (m, k) = (18
5
, 18)

Lemma 2.7 H does not contain the following two configurations:

(1) A 31-vertex v adjacent to a 42-vertex u.

(2) A 30-vertex v adjacent to a 43-vertex u and a 42-vertex w (see Figure 6).

u

1
u

2
u

3
u

v w

t

1
w

2
w

3
w

Figure 6: A 30-vertex v adjacent to a 43-vertex and a 42-vertex

Proof. (1) Suppose otherwise that a 31-vertex v is adjacent to a 42-vertex u. Let N(v) = {u,w, t},
where t is a 3-vertex and w is a 4-vertex. By the minimality of H, H ′ = H − v has a strong

edge-coloring with at most eighteen colors. It is easy to verify that |L′(uv)| ≥ 2, |L′(vt)| ≥ 4 and

|L′(vw)| ≥ 1. Thus, we color vw, uv, and vt in turn and we obtain a desired strong edge-coloring

with eighteen colors, a contradiction.

(2) Suppose otherwise that a 30-vertex v is adjacent to a 43-vertex u and 42-vertex w. Let t,

u3, w2 and w3 be 4-vertices and let u1, u2 and w1 be 3-vertices. We use the notations in Figure 6.

By the minimality of H, H ′ = H − v has a strong edge-coloring.

We claim that w1 6= ui, where i = 1, 2. Suppose that w1 = u1. Uncolor uu1, then |L′(uv)| ≥ 4,

|L′(vw)| ≥ 3, |L′(vt)| ≥ 1 and |L′(uu1)| ≥ 4. Thus, we can color vt, vw, uu1 and uv in turn to

obtain a strong edge-coloring of H, a contradiction.

By (1), a 31-vertex is not adjacent to a 42-vertex. Thus, u1w1 /∈ E(H).

Now, uncolor uu1, ww1, then |L′(uv)| ≥ 4, |L′(vw)| ≥ 3, |L′(vt)| ≥ 2, |L′(uu1)| ≥ 3, |L′(ww1)| ≥
2. If L′(uu1)∩L′(ww1) 6= ∅, we color edges uu1, ww1 with the same color and color vt, vw, uv in turn

to obtain a strong edge-coloring of H, a contradiction. Thus, we assume that L′(uu1)∩L′(ww1) = ∅.
Note that |L′(uu1) ∪ L′(ww1)| ≥ 5. Let T = {uv, vw, vt, uu1, ww1}, for any S ⊆ T , we have

| ∪e∈S L′(e)| ≥ |S|. By Theorem 1.5, we can assign five distinct colors to uncolored edges. Thus,

we obtain a strong edge-coloring with eighteen colors, a contradiction.

Consider the final charge of x0. By Lemma 2.2, x0 is a 3-vertex. By Lemma 2.1 (c), x0 is

adjacent to at least two 4-vertices. If x0 is a 31-vertex, then x0 is not adjacent to a 42-vertex by

Lemma 2.7(1). Thus, by (R2), ω∗(x0) ≥ 3− 18
5 + (4− 18

5 ) · 2 = 11− 3 · 185 = 1
5 > 0, a contradiction.

Thus, we assume that x0 is a 30-vertex. By Lemma 2.1 (d), x0 is not adjacent to a 44-vertex.

If x0 is adjacent to a 43-vertex, then x0 is not adjacent to any 42-vertex by Lemma 2.7(2). This

implies that ω∗(x0) ≥ 3− 18
5 + (4− 18

5 )/3 + (4− 18
5 ) · 2 = 28

3 − 9 = 1
3 > 0, a contradiction.
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If x0 is not adjacent to any 43-vertex, then ω∗(x0) ≥ 3− 18
5 + 3 · (4− 18

5 )/2 = 9− 5 · (185 /2) ≥ 0,

a contradiction.

2.4 Case 4: (m, k) = (15
4
, 19)

Fig-eps-converted-to.pdf

Figure 7: A 42-vertex

Lemma 2.8 There is no 42-vertex.

Proof. Suppose otherwise that u is a 42-vertex. Let u1 and u2 be 3-vertices and let u3 and u4 be

4-vertices. We shall use the notations in Figure 7. We first establish the following claims.

Claim 1. {u11, u12} ∩ {u21, u22} = ∅.

Proof of Claim 1. Suppose otherwise that u11 = u21 by symmetry. Let H ′ = H − {u, u1, u2}. By

the minimality of H, H ′ has a strong edge-coloring with at most nineteen colors. In this case, one

can see that |L′(uu3)| ≥ 4, |L′(uu4)| ≥ 4, |L′(uu1)| ≥ 8, |L′(uu2)| ≥ 8, |L′(u1u11)| ≥ 8, |L′(u1u12)| ≥
5, |L′(u2u21)| ≥ 8 and |L′(u2u22)| ≥ 5. We can properly color uu3, uu4, u1u12, u2u22, uu1, uu2, u1u11
and u2u21 in turn. Thus, we obtain a strong edge-coloring with nineteen colors, a contradiction.

This proves Claim 1.

Claim 2. There is a pair of non adjacent vertices u1i and u2j for some i, j ∈ {1, 2}.

Proof of Claim 2. Suppose otherwise that for each i, j ∈ {1, 2}, u1iu2j ∈ E(G). In this case,

let N(u1i) = {u1, u21, u22, u′1i} for i = 1, 2 and N(u2j) = {u2, u11, u12, u′2j} for j = 1, 2. Let

H ′ = H − {u1, u2, u11, u12, u21, u22}. By the minimality of H, H ′ has a strong edge-coloring with

at most nineteen colors. One can observe that L′(uu1)| ≥ 11, L′(uu2)| ≥ 11, L′(u1u11)| ≥ 14,

L′(u1u12)| ≥ 14, L′(u2u21)| ≥ 14, L′(u2u22)| ≥ 14, L′(u11u21)| ≥ 13, L′(u11u22)| ≥ 13, L′(u12u21)| ≥
13, L′(u12u22)| ≥ 13, L′(u11u

′
11)| ≥ 7, L′(u12u

′
12)| ≥ 7,L′(u21u

′
21)| ≥ 7, and L′(u22u

′
22)| ≥ 7. Thus,

we can properly color u11u
′
11, u12u

′
12, u21u

′
21, u22u

′
22, uu1, uu2, u11u21,u11u22, u12u21, u12u22, u1u11,

u1u12, u2u21, u2u22 in turn and obtain a strong edge-coloring with nineteen colors, a contradiction.

This proves Claim 2.

By Claims 1 and 2, we assume that the distance between u1u11 and u2u21 is at least 3. In order

to prove Lemma 2.8, we need the following claim.

Claim 3. One of the following holds.

(1) There is a pair of non adjacent vertices u12 and u2j for some j ∈ {1, 2}.
(2) There is a pair of non adjacent vertices u1i and u21 for some i ∈ {1, 2}.

Proof of Claim 3. By symmetry, we only prove (1). Suppose otherwise that for each j ∈ {1, 2},
u12u2j ∈ E(G). Let N(u12) = {u1, u21, u22, u′12}, N(u21) = {u2, u12, u′21, u′′21} and N(u22) =

{u2, u12, u′22, u′′22}. Let H ′ = H − {u1, u2, u12, u21, u22}. By the minimality of H, H ′ has a strong

edge-coloring with at most nineteen colors. One can observe that |L′(uu1)| ≥ 8, |L′(uu2)| ≥
11, |L′(u1u11)| ≥ 7, |L′(u1u12)| ≥ 13, |L′(u12u21)| ≥ 10, |L′(u12u22)| ≥ 10, |L′(u2u21)| ≥ 13,
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|L′(u2u22)| ≥ 13, |L′(u12u′12)| ≥ 7, |L′(u21u′21)| ≥ 7, |L′(u21u′′21)| ≥ 7, |L′(u22u′22)| ≥ 7, and

|L′(u22u′′22)| ≥ 7. Thus, we can properly color u12u
′
12, u21u

′
21, u21u

′′
21, u22u

′
22, u22u

′′
22, u1u11, uu1, u12u21,

u12u22, uu2, u2u21, u2u22, u1u12 in turn and obtain a strong edge-coloring with nineteen colors, a

contradiction. This proves Claim 3.

Let H ′ = H − {u, u1, u2}. By the minimality of H, H ′ has a strong edge-coloring with at

most nineteen colors. One can observe that |L′(uu3)| ≥ 4, |L′(uu4)| ≥ 4, |L′(uu1)| ≥ 7, |L′(uu2)| ≥
7, |L′(u1u11)| ≥ 4, |L′(u1u12)| ≥ 4, |L′(u2u21)| ≥ 4 and |L′(u2u22)| ≥ 4.

Claim 4. (1) L′(u1u11) ∩ L′(u2u21) = ∅.
(2) Either L′(u1u12) ∩ L′(u2u2j) = ∅ for some j ∈ {1, 2} or L′(u2u21) ∩ L′(u1u1i) = ∅ for some

i ∈ {1, 2}.

Proof of Claim 4. We only prove (1) and the proof of (2) is similar. Suppose otherwise that

α ∈ L′(u1u11) ∩ L′(u2u21) by symmetry. We assign α to both u1u11 and u2u21, then properly

color u1u12, uu3, uu4. By Claim 1, u12 6= u22. If u12 is adjacent to u22, then one can observe

that |L′(uu3)| ≥ 4, |L′(uu4)| ≥ 4, |L′(uu1)| ≥ 7, |L′(uu2)| ≥ 7, |L′(u1u11)| ≥ 4, |L′(u1u12)| ≥
5, |L′(u2u21)| ≥ 4 and |L′(u2u22)| ≥ 5. So, we can properly color u2u22. Thus, we may assume that

the distance between u1u12 and u2u22 is at least 3. In this case, we also properly color u2u22. In

each case, since |L′(uu1)| ≥ 7 and |L′(uu2)| ≥ 7, we can properly color uu1, uu2. Thus, we obtain

a strong edge-coloring with nineteen colors, a contradiction. This proves our claim.

By Claim 4, we may assume that |L′(u1u11) ∪ L′(u2u21)| ≥ 8 and that either |L′(u1u12 ∪
L′(u2u2j)| ≥ 8 for some j ∈ {1, 2} or |L′(u1u1i)∪L′(u2u21)| ≥ 8 for some i ∈ {1, 2}. For any subset

T ⊆ {uu1, uu2, uu3, uu4, u1u11, u1u12, u2u21, u2u22}, |
∑

e∈T L
′(e)| ≥ |T |. By Theorem 1.5, we can

assign eight distinct colors to eight uncolored edges to obtain a strong-edge coloring with nineteen

colors, a contradiction.

Consider the final weight of x0. By Lemma 2.2, x0 is a 3-vertex. By Lemma 2.1 (c), x0 is

adjacent to at least three 4-vertices, and by Lemmas 2.1 (d) and 2.8, none of which is a 43-vertex

or a 44-vertex or 42-vertex. Furthermore, x0 is adjacent to at most one 41-vertex.

Since x0 is not adjacent to a 42-vertex, ω∗(v) = 3 − 15
4 + 3(4 − 15

4 ) = 15 − 4 · 154 = 0, a

contradiction.

2.5 Case 5: (m, k) = (51
13
, 20)

Lemma 2.9 The distance between two 3-vertices is at least 4.

Proof. By Lemma 2.1 (d), the distance between two 3-vertices is at least 3. Suppose that there

exists the distance between two 3-vertices v and y at distance 3. Let N(v) = {u,w, t}, N(t) =

{v, t1, t2, x}, and N(x) = {t, x1, x2, y} (see Figure 8).

u

1
t

2
t

xv

w

1
x

2
x

yt

Figure 8: The distance between two 3-vertices v and y is 3
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By Lemma 2.1 (d), wy /∈ E(H). By the minimality of H, H ′ = H−v has a strong edge-coloring

c with at most twenty colors. In the strong edge-coloring c of H ′, we erased the colors of edges tx

and xy so that we get a partial coloring c′. Observe that |L′(uv)| ≥ 3, |L′(vw)| ≥ 3, |L′(vt)| ≥ 4,

|L′(tx)| ≥ 2 and |L′(xy)| ≥ 2. If L′(xy) ∩ L′(vw) 6= ∅, we color edges xy, vw with the same color

and then color tx, uv, vt in turn and we obtain a desired strong edge-coloring with twenty colors,

a contradiction. If L′(xy) ∩ L′(vw) = ∅, then |L′(xy) ∪ L′(vw)| ≥ 5. Let T = {uv, vw, vt, tx, xy},
for any S ⊆ T , we have | ∪e∈S L′(e)| ≥ |S|. By Theorem 1.5, we can assign a distinct color to

uncolored edge, then we obtain a desired strong edge-coloring with twenty colors, a contradiction.

Lemma 2.10 The distance between two 3-vertices is at least 5.

Proof. By Lemma 2.9, the distance between two 3-vertices is at least 4. Suppose otherwise that

there exist two 3-vertices v and x at distance 4. We use the notations in Figure 9.
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Figure 9: The distance between two 3-vertices v and x is 4

By the minimality of H, H ′ = H − {v, x} has a strong edge-coloring c with at most twenty

colors. In the strong edge-coloring c of H ′, we erased the colors of edges st and tp so that we get

a partial coloring c′. We will extend this partial coloring c′ to a strong edge-coloring of H. One

can observe that |L′(uv)| ≥ 3, |L′(vw)| ≥ 3, |L′(vs)| ≥ 4, |L′(st)| ≥ 2, |L′(tp)| ≥ 2, |L′(px)| ≥ 4,

|L′(xy)| ≥ 3, |L′(xz)| ≥ 3. We consider the following two cases.

Case 1. One of L′(uv)∩L′(tp), L′(wv)∩L′(tp), L′(xy)∩L′(st) and L′(xz)∩L′(st) is not empty.

We assume, without loss of generality, that L′(uv) ∩ L′(tp) 6= ∅. We establish the following

claim.

Claim 1. (1) L′(uv) ∩ L′(tp) ⊆ L′(px), L′(uv) ∩ L′(tp) ⊆ L′(xy) and L′(uv) ∩ L′(tp) ⊆ L′(xz).
(2) L′(xy) ⊆ L′(px) and L′(xz) ⊆ L′(px).

(3) |L′(px)| = 4, |L′(xy)| = 3 and |L′(xz)| = 3.

(4) L′(xy) = L′(xz).

(5) L′(st) ⊆ L′(px) and |L′(st)| = 2.

(6) |L′(st) ∩ L′(xy)| = 1.

(7) |L′(vs)| = 4, |L′(uv)| = 3 and |L′(vw)| = 3.

Proof of Claim 1. (1) We only prove that L′(uv) ∩ L′(tp) ⊆ L′(px). The proofs for other cases

are similar. Suppose otherwise we can pick α ∈ L′(uv) ∩ L′(tp) and α /∈ L′(px), then we can
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color uv and tp with α and color st, wv, vs, xy, xz, px in turn. Thus, we obtain a desired strong

edge-coloring with twenty colors, a contradiction.

(2) We only prove that L′(xy) ⊆ L′(px) and the proof for the other case is similar. Suppose

otherwise. We can pick β ∈ L′(xy) and β /∈ L′(px). By (1), L′(uv) ∩ L′(tp) ⊆ L′(px) and hence

β /∈ L′(uv)∩L′(tp). Since L′(uv)∩L′(tp) 6= ∅, we color uv and tp with the same color, color xy with

the color β and color st, wv, vs, xz, px in turn. Thus, we obtain a desired strong edge-coloring

with twenty colors, a contradiction.

(3) We only prove that |L′(px)| = 4 and the proofs for other cases are similar. Suppose otherwise

that |L′(px)| ≥ 5. We can color uv and tp with the same color and color st, wv, vs, xz, xy, px in

turn. Thus, we obtain a desired strong edge-coloring with twenty colors, a contradiction.

(4) If L′(xy) 6= L′(xz), then we have L′(xy) ∪ L′(xz) = L′(px) since L′(xy) ⊆ L′(px) and

L′(xz) ⊆ L′(px). Thus we can color uv and tp with the same color and color st, wv, vs in

turn so that we get a partial coloring c′′. One can observe that |L′(px) \ {c′′(tp), c′′(st}| ≥ 2,

|L′(xy)\{c′′(tp)}| = 2, |L′(xz)\{c′′(tp)}| = 2 and |L′(xy)∪L′(xz)\{c′′(tp)}| = 3. By Theorem 1.5,

we can assign distinct colors to xy, xz and px. Thus, we obtain a desired strong edge-coloring with

twenty colors, a contradiction.

(5) Suppose otherwise we can pick β′ ∈ L′(st) and β′ /∈ L′(px). By (1), L′(uv)∩L′(tp) ⊆ L′(px).

Then β′ /∈ L′(uv) ∩ L′(tp). Thus, we color uv and tp with the same color, color st with the color

β′ and color wv, vs, xy, xz, px in turn. Thus, we obtain a desired strong edge-coloring with

twenty colors, a contradiction. Suppose otherwise that |L′(st)| ≥ 3. We color uv and tp with

the same color, then color xy, xz, xp, st, vw and vs in turn. Therefore, we obtain a desired strong

edge-coloring with twenty colors, a contradiction.

(6) We first show that L′(st) ∩ L′(xy) 6= ∅. Suppose otherwise that L′(st) ∩ L′(xy) = ∅. By (2)

and (5), L′(xy) ⊆ L′(px) and L′(st) ⊆ L′(px). This implies that |L′(px)| ≥ |L′(xy)|+ |L′(st)| ≥ 5,

contrary to (3). We now show that |L′(st)∩L′(xy)| = 1. Suppose otherwise that |L′(st)∩L′(xy)| ≥
2. We color uv and tp with the same color α∗ and we can pick β′′ ∈ L′(st) ∩ L′(xy) \ {α∗}. Thus

we color st, xy with the same color β′′ and color wv, vs, xz and px in turn. Thus, we obtain a

desired strong edge-coloring with twenty colors, a contradiction.

(7) By (6), L′(st)∩L′(xy) 6= ∅. By replacing that L′(uv)∩L′(tp) 6= ∅ by that L′(st)∩L′(xy) 6= ∅,
we obtain |L′(vs)| = 4, |L′(uv)| = 3 and |L′(vw)| = 3 by the argument in the proof of (3).

So far, we have proved Claim 1.

By Claim 1(4), we assume, without loss of generality, that L′(px) = {1, 2, 3, 4}, L′(xy) =

L′(xz) = {1, 2, 3}. By Claim 1(5), we assume, without loss of generality, that L′(st) = {3, 4}. By

Claim 1(7), we may assume, without loss of generality, that L′(vs) = {α1, α2, α3, α4}, L′(uv) =

L′(wv) = {α1, α2, α3} and L′(tp) = {α3, α4}.
We claim that L′(tp) = {α3, α4} = {3, 4}. If 3 /∈ L′(tp), then 3 ∈ L(tp). Since L′(st) = {3, 4}

and L′(px) = {1, 2, 3, 4}, 3 /∈ L(st)∪L(px) and L(tp) ⊆ L(st)∪L(px). This implies that 3 /∈ L(tp),

a contradiction. Thus, 3 ∈ L′(tp). By symmetry, we may assume that 4 ∈ L′(tp). If L′(vs) =

{α1, α2, 3, 4} and L′(uv) = L′(wv) = {α1, α2, 4}, then we color both tp and uv with 4, color both

st and xy with 3 and color wv with α1, color vs with α2, color xz with 1 and color px with 2. This

means that we obtain a desired strong edge-coloring with twenty colors, a contradiction. Therefore,

we may assume that L′(vs) = {α1, α2, 3, 4}, L′(uv) = L′(wv) = {α1, α2, 3}.
Recall that L′(px) = {1, 2, 3, 4}. We may assume, without loss of generality, that c′(pp1) = 5,

c′(pp2) = 6, c′(p1p3) = 7, c′(p1p4) = 8, c′(p1p5) = 9, c′(p2p6) = 10, c′(p2p7) = 11, c′(p2p8) = 12,

c′(tt1) = 13, c′(tt2) = 14, c′(yy1) = 15, c′(yy2) = 16, c′(yy3) = 17, c′(zz1) = 18, c′(zz2) = 19,

c′(zz3) = 20. We now claim that {15, 16, 17, 18, 19, 20} ⊆ {p3p9, p3p10, p3p11, p4p12, p4p13, p4p14, p5p15,
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p5p16, p5p17}. If 15 /∈ {p3p9, p3p10, p3p11, p4p12, p4p13, p4p14, p5p15, p5p16, p5p17}, we recolor pp1 with

color 15, color st with 5, color pt with 3, color xy with 1, color xz with 2, color px with 4, color

vs with 4, color uv with 3 and color wv with a color α∗∗ ∈ {α1, α2} and α∗∗ 6= 5. Thus, we obtain

a desired strong edge-coloring with twenty colors, a contradiction. Similarly, we can prove that

{16, 17, 18, 19, 20} ⊆ {p3p9, p3p10, p3p11, p4p12, p4p13, p4p14, p5p15, p5p16, p5p17}.
By symmetry, we may assume that c′(p3p9) = 15, c′(p3p10) = 16, c′(p3p11) = 17, c′(p4p12) = 18,

c′(p4p13) = 19, c′(p4p14) = 20. Now we claim that 5 ∈ {α1, α2}. If 5 /∈ {α1, α2}, we can pick

β∗ ∈ {1, 2, 3, 4}\{c′(p5p15), c′(p5p16), c′(p5p17)}. If β∗ ∈ {1, 2}, then we recolor pp1 with β∗ and

color both st and xy with 5, color pt with 4, color xz with the color in {1, 2} \ {β∗}, color both

px and vs with 3, color uv and wv with α1 and α2 respectively. Thus, we obtain a desired strong

edge-coloring with twenty colors, a contradiction. If β∗ ∈ {3, 4}, then we recolor pp1 with β∗ and

color both st and xy with 5, color pt with a color in {3, 4} \ {β∗}, color xz with 1, color px with

2, color vs with α1, color uv and wv with 3 and α2, respectively. Thus, we obtain a desired strong

edge-coloring with twenty colors, a contradiction.

By symmetry, we have 6 ∈ {α1, α2}. Therefore we have L′(vs) = {3, 4, 5, 6}, L′(uv) = L′(wv) =

{3, 5, 6}. Since L′(px) = {1, 2, 3, 4}, L′(xy) = L′(xz) = {1, 2, 3} and by symmetry, we claim that

{c′(ss1), c′(ss2)} = {1, 2}.
Now we claim that {c′(p5p15), c′(p5p16), c′(p5p17)} = {1, 2, 4}. If 1 /∈ {c′(p5p15), c′(p5p16), c′(p5p17)},

we recolor pp1 with 1 and color both st and xy with 5, color pt with 3, color xz with 2, color both px

and vs with 4, color uv with 3 and color wv with 6. Thus, we obtain a desired strong edge-coloring

with twenty colors, a contradiction. Similarly, we can prove that 2 ∈ {c′(p5p15), c′(p5p16), c′(p5p17)}.
If 4 /∈ {c′(p5p15), c′(p5p16), c′(p5p17)}, we recolor pp1 with 4 and color both st and xy with 5,

color pt with 3, color xz with 1, color px with 2 and vs with 4, color uv with 3 and color wv with

6. Thus, we obtain a desired strong edge-coloring with twenty colors, a contradiction.

Recall L′(st) = L′(tp) = {3, 4} and {c′(ss1), c′(ss2)} = {1, 2}. We assume, without loss of

generality, that c′(t1t3) = 15, c′(t1t4) = 16, c′(t1t5) = 17, c′(t2t6) = 18, c′(t2t7) = 19, c′(t2t8) = 20.

c′(s1s3) = 7, c′(s1s4) = 8, c′(s1s5) = 9, c′(s2s6) = 10, c′(s2s7) = 11, c′(s2s8) = 12. By symmetry of

p and s, we may assume that {c′(s3s9), c′(s3s10), c′(s3s11), c′(s4s12), c′(s4s13), c′(s4s14), c′(s5s15),
c′(s5s16), c

′(s5s17)} = {15, 16, 17, 18, 19, 20, 4, 5, 6}. Therefore, we can recolor both ss1 and pp1 with

3, color st with 1, color tp with 5, color xy, xz, px, uv, wv, vs with 1, 2, 4, 5, 6, 4, respectively,

Thus, we obtain a desired strong edge-coloring with twenty colors, a contradiction.

Case 2. L′(uv) ∩ L′(tp) = ∅, L′(wv) ∩ L′(tp) = ∅, L′(xy) ∩ L′(st) = ∅ and L′(xz) ∩ L′(st) = ∅.

In this case, we have |L′(uv)∪L′(tp)| ≥ 5, |L′(wv)∪L′(tp)| ≥ 5, |L′(xy)∪L′(st)| ≥ 5, |L′(xz)∪
L′(st)| ≥ 5. We now prove the following claim.

Claim 2. (1) |L′(vs)| = 4 and |L′(px)| = 4.

(2) |L′(uv)| = |L′(wv)| = 3.

(3) L′(uv) ⊆ L′(vs), L′(wv) ⊆ L′(vs), L′(xy) ⊆ L′(px) and L′(xz) ⊆ L′(px).

(4) L′(uv) = L′(wv).

Proof of Claim 2. (1) We only prove that |L′(vs)| = 4 and the proof for the case |L′(px)| = 4 is

similar. Suppose otherwise that |L′(vs)| ≥ 5. In this case, let T = {st, tp, px, xy, xz}. Note that

|L′(st) ∪ L′(xy)| ≥ 5. For any S ⊆ T , we have | ∪e∈S L′(e)| ≥ S. By Theorem 1.5, we can assign a

distinct color to each edge in T . We then properly color uv, vw and vs in turn. Thus, we obtain a

desired strong edge-coloring with twenty colors, a contradiction.

(2) Suppose otherwise that |L′(uv)| ≥ 4. The proofs for the cases are similar. In this case, we

also let T = {st, tp, px, xy, xz}. Since |L′(xy)∪L′(st)| ≥ 5, for any S ⊆ T , we have |∪e∈SL′(e)| ≥ S.
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By Theorem 1.5, we can assign a distinct color to each edge in T . We now properly color vw, vs

and uv in turn. Thus, we obtain a desired strong edge-coloring with twenty colors, a contradiction.

(3) Suppose otherwise that L′(uv) * L′(vs). The proofs for the other cases are similar. Let

γ ∈ L′(uv)\L′(vs). Let T = {st, tp, px, xy, xz}. Since |L′(xy)∪L′(st)| ≥ 5, for any S ⊆ T , we have

| ∪e∈S L′(e)| ≥ S. By Theorem 1.5, we can assign a distinct color to each edge in T . In particular,

st is assigned color β. If γ 6= β, then we now color vw with a color in L′(vw) \ {γ, β}, properly

color vw and vs in turn; if γ = β, then properly color uv, vw and vs in turn. In both cases, Thus,

we obtain a desired strong edge-coloring with twenty colors, a contradiction.

(4) Suppose otherwise that L′(uv) 6= L′(wv). Let α ∈ L′(uv) \L′(vw) and β ∈ L′(vw) \L′(uv).

Let T = {st, tp, px, xy, xz}. Since |L′(xy) ∪ L′(st)| ≥ 5, for any S ⊆ T , we have | ∪e∈S L′(e)| ≥ S.

By Theorem 1.5, we can assign a distinct color to each edge in T . In particular, st and tp are

assigned color γ1 and γ2, respectively. Since α 6= β, we may assume that α 6= γ. Now we color vs

with a color in L′(vs) \ {γ1, γ2, α}, properly color vw and color uv with color α. Thus, we obtain

a desired strong edge-coloring with twenty colors, a contradiction. By symmetry, L′(xy) = L′(xz).

We now complete the proof of Claim 2.

By Claim 2, we assume, without loss of generality, that L′(uv) = L′(wv) = {1, 2, 3}, L′(vs) =

{1, 2, 3, 4}, L′(xy) = L′(xz) = {β1, β2, β3}, L′(px) = {β1, β2, β3, β4}.
Since L′(uv) ∩ L′(pt) = ∅, |L′(pt)| ≥ 2, we can pick γ∗∗ ∈ L′(pt) and γ∗∗ 6= 4. If γ∗∗ = β1, we

firstly color tp with γ∗∗, color xy, xz,and px with β2, β3 and β4 respectively. Since L′(xy)∩L′(st) =

∅, {β1, β2, β3} ∩ L′(st) = ∅. This implies that γ∗∗ /∈ L′(st). Thus, we can properly color st, uv,

wv, vs in turn. Thus, we obtain a desired strong edge-coloring with twenty colors, a contradiction.

The proofs are similar for the cases that γ∗∗ = β2 and γ∗∗ = β3. If γ∗∗ = β4, we firstly color tp

with γ∗∗, color xy, xz,and px with β1, β2 and β3 respectively. Since L′(xy) ∩ L′(st) = ∅, we can

properly color st, uv, wv, vs in turn. Thus, we obtain a desired strong edge-coloring with twenty

colors, a contradiction. If γ∗∗ /∈ {β1, β2, β3, β4}, then we firstly color tp with γ∗∗. Since γ∗∗ 6= 4

and L′(st) ∩ L′(xy) = ∅, we can properly color st, xy, xz, px in turn. Since L′(uv) ∩ L′(pt) = ∅,
L′(wv) ∩ L′(pt) = ∅ and γ∗∗ ∈ L′(pt), we can color uv, wv, vs in turn. Thus, we obtain a desired

strong edge-coloring with twenty colors, a contradiction.

Consider the final weight of x0. By Lemma 2.2, x0 is a 3-vertex. By Lemma 2.10, for each

4-vertex u ∈ N2(x0), x0 is the only one 3−-vertex in N2(u). By (R2), ω∗(x0) = 3 − 51
13 + 3 · (4 −

51
13) + 9 · (4− 51

13) = 51− 13 · 5113 = 0, a contradiction.

3 Concluding remarks

We feel that Lemma 2.10 can be strengthened to show that the distance between 3-vertices should be

arbitrary large, implying that there is at most one 3-vertex. But one may have an argument to show there

is no 3-vertex at all, so we do not make much more effort than Lemma 2.10.

We do not have constructions to show the sharpness of the maximum average degrees in our theorem,

and we do not believe they are sharp.
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