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Abstract. We study Steinberg’s Conjecture. A graph is (c1, c2, · · · , ck)-colorable if the

vertex set can be partitioned into k sets V1, V2, . . . , Vk, such that for every i with 1 ≤ i ≤ k

the subgraph G[Vi] has maximum degree at most ci. We show that every planar graph

without 4- or 5-cycles is (3, 0, 0)-colorable. This is a relaxation of Steinberg’s Conjecture

that every planar graph without 4- or 5-cycles is properly 3-colorable (i.e., (0, 0, 0)-colorable).

1. Introduction

Graph Colorings have been studied extensively over the past century. Most famously,

Appel and Haken [1, 2] proved that every planar graph is properly 4-colorable in 1977.

However, the problem of deciding whether a planar graph is properly 3-colorable is NP-

complete [8]. In 1959, Grötzsch [9] proved the well-known theorem that planar graphs

without 3-cycles are properly 3-colorable. A lot of research was devoted to find sufficient

conditions for a planar graph to be 3-colorable, by allowing a triangle together with some

other conditions, for example. One of such efforts is the following famous conjecture made

by Steinberg in 1976.

Conjecture 1 (Steinberg, [12]). All planar graphs without 4-cycles and 5-cycles are properly

3-colorable.

Not much progress in this direction was made until Erdős proposed to find a constant

C such that a planar graph without cycles of length from 4 to C is properly 3-colorable.

Borodin, Glebov, Raspaud, and Salavatipour [4] showed that C ≤ 7. For more results, see

the recent nice survey by Borodin [3].

Yet another direction of relaxation of the conjecture is to allow some defects in the color

classes. A graph is (c1, c2, · · · , ck)-colorable if the vertex set can be partitioned into k sets

V1, V2, . . . , Vk, such that for every i : 1 ≤ i ≤ k the subgraph G[Vi] has maximum degree at

most ci. Thus a (0, 0, 0)-colorable graph is properly 3-colorable.

Cowen, Cowen, and Woodall [6] proved that planar graphs are (2, 2, 2)-colorable. Eaton

and Hull [7] and independently Škrekovski [11] showed that every planar graph is (2, 2, 2)-

choosable. Xu [13] proved that all planar graphs without adjacent triangles or 5-cycles are

(1, 1, 1)-colorable. Chang, Havet, Montassier, and Raspaud [5] proved that all planar graphs

without 4-cycles or 5-cycles are (2, 1, 0)-colorable and (4, 0, 0)-colorable. Xu and Wang [15]
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showed that planar graphs without 4- or 6-cycles are (3, 0, 0)- and (1, 1, 0)-colorable. Hill and

Yu [10], and independently Xu, Miao, and Wang [14] improved one of the results by Chang

et. al. and showed that all planar graphs without 4-cycles or 5-cycles are (1, 1, 0)-colorable.

In this paper, we prove the following relaxation of the Steinberg Conjecture and improve the

other result of Chang et al.

Theorem 1. All planar graphs without 4-cycles or 5-cycles are (3, 0, 0)-colorable.

We will use the following notations in the proofs. A k-vertex (k+-vertex, k−-vertex) is a

vertex of degree k (at least k, at most k resp.). The same notation will apply to faces. An

(`1, `2, . . . , `k)-face is a k-face with incident vertices of degree `1, `2, . . . , `k. A bad 3-vertex

is a 3-vertex on a 3-face. A face f is a pendant 3-face to vertex v if v is not on f but is

adjacent to some bad 3-vertex on f . The pendant neighbor of a 3-vertex v on a 3-face is the

neighbor of v not on the 3-face.

u

v

f

Figure 1. In the figure, v is a bad 3-vertex, f is a pendant 3-face to u, and

u is the pendant neighbor of v.

A vertex v is properly colored if all neighbors of v have different colors from v. A vertex v

is nicely colored if it shares a color with at most max{si − 1, 0} neighbors, where si is the

deficiency allowed for color i, thus if a vertex v is nicely colored by a color c which allows

deficiency si > 0, then an uncolored neighbor of v can be colored by c.

In the next section, we will prove some necessary reducible configurations, and in the last

section, we finish the proof by using a discharging argument.

2. Reducible Configurations

Let G be a minimum counterexample to Theorem 1, that is, G is a planar graph without

4- or 5-cycles and is not (3, 0, 0)-colorable, but any proper subgraph of G is (3, 0, 0)-colorable.

We may assume that vertices colored by 1 may have up to three neighbors colored by 1.

The following are some simple observations about the minimal counterexamples to the

above theorem.

Proposition 1. (a) G contains no 2−-vertices.

(b) a k-vertex in G can have α ≤ bk
2
c incident 3-faces, and at most k − 2α pendant 3-faces.

The following is a very useful tool to extend a coloring on a subgraph of G to include more

vertices.
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Lemma 1. Let H be a proper subgraph of G. Given a (3, 0, 0)-coloring of G−H, if exactly

two neighbors of v ∈ H are colored so that one is a 5−-vertex and the other is nicely colored,

then there exists a (3, 0, 0)-coloring of G−H that can be extended to G− (H − v) such that

v is nicely colored by 1.

Proof. Let H be a subgraph of G such that G−H has a (3, 0, 0)-coloring. Let v ∈ H have

neighbors u and w that are colored. Let d(u) ≤ 5 and w be nicely colored. Color v by 1.

Since w is nicely colored, if this coloring is invalid, then u must be colored by 1. In addition,

u must have at least 3 neighbors colored by 1. To avoid recoloring u by 2 or 3, u must

have at least one neighbor of color 2 and at least one neighbor of color 3. This implies that

d(u) ≥ 6 > 5, a contradiction. So v is colorable by 1. In addition, since the deficiency of

color 1 is 3 and v only has 2 colored neighbors, v is nicely colored. �

Lemma 2. Every 3-vertex in G has a 6+-vertex as a neighbor.

Proof. Let v be a 3-vertex in G such that each neighbor of v has degree at most 5. By the

minimality of G, G − v is (3, 0, 0)-colorable. If two vertices in the neighborhood of v share

the same color, then v can be properly colored, so we can assume that all the neighbors of

v are colored differently. Let u be the neighbor of v that is colored by 1. Then u must have

3 neighbors colored by 1 to forbid v to be colored by 1. In addition, u must have neighbors

colored by 2 and 3 to forbid recoloring u by 2 or 3 and then coloring v by 1. Then, u has at

least 6 neighbors, a contradiction. �

Call a (3, 3, 3+)-face poor if the pendant neighbors of the two 3-vertices have degrees at

most 5. A (3, 3+, 3+)-face is semi-poor if exactly one of the pendant neighbors of the 3-

vertices has degree 5 or less. A 3-face is non-poor if each 3-vertex on it, if any, has the

pendant neighbor being a 6+-vertex. Finally, a poor 3-vertex is a 3-vertex on a poor or

semi-poor 3-face that has a 5−-vertex as its pendant neighbor.

1
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Figure 2. In the figure, f1 is a poor 3-face and f2 is a semi-poor 3-face.

Lemma 3. All (3,3,6−)-faces in G are non-poor.
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Proof. For all (3, 3, 5−)-faces in G, the proof is trivial by Lemma 2. Let uvw be a (3, 3, 6)-face

in G with d(u) = d(v) = 3 such that the pendant neighbor v′ of v has degree at most 5. By

the minimality of G, G\{u, v} is (3, 0, 0)-colorable. Properly color u and color v differently

than both w and v′. Then either we obtain a (3, 0, 0)-coloring of G, contradicting the choice

of G, or u and v are both colored by 2 or 3, w.l.o.g. assume 2. This means that u′ and v′

share the same color (where u′ is the pendant neighbor of u), different from the color of w.

Let w be colored by 1, then to avoid being able to recolor u or v by 1, w must have 3

outer neighbors colored by 1. Then w can be recolored by 2 or 3 depending on the color of

its fourth colored neighbor. We recolor w by 2 or 3 and recolor u and v by 1 to get a coloring

of G, a contradiction.

So we may assume that w is colored by 3, and that u′ and v′ are colored by 1. To avoid

recoloring v by 1, v′ must have at least 3 neighbors colored by 1. In addition, to avoid

recoloring v′ by 2 or 3 and coloring v by 1, v′ must have neighbors colored by both 2 and 3.

This contradicts that v′ has degree less than 6. �

Here is a simple fact on extending a coloring to a poor 3-face.

Lemma 4. Let f = uvw be a poor 3-face with d(u) = d(v) = 3. Then a partial coloring of

G− {u, v, w} can be extended to include u and v so that u and v are colored with 1.

Proof. Let u′ and v′ be the pendant neighbors of u and v, respectively. We may assume that

u′ and v′ are colored, and as d(u′), d(v′) ≤ 5, we may further assume that u′ and v′ are both

nicely colored (if not, then color 2 or 3 would be available to recolor them). So we can first

color u by 1, and then by Lemma 1, color v by 1 as well. �

Lemma 5. No 4+-vertex v ∈ V (G) can have bd(v)
2
c incident poor 3-faces.

Proof. Let v be a k-vertex in G with bk
2
c incident poor (3, 3, k)-faces. Let u1, u2, · · · , uk be

the neighbors of v, and let u′i be the pendant neighbor if ui is in a poor 3-face. Note that

d(u′i) ≤ 5 and we know that all except possibly uk are in poor 3-faces.

By the minimality of G, G\{v, u1, u2, · · · , uk−1} is (3, 0, 0)-colorable. If d(v) is odd, then

by Lemma 4, for all i with 1 ≤ i ≤ k− 1, we can color ui by 1, then properly color v to get a

coloring of G. So we assume that d(v) is even. By Lemma 4, for all i with 1 ≤ i ≤ k− 2, we

can color ui by 1. Then if uk is colored by 1 we can color uk−1 properly and v properly to get

a coloring of G. If uk is colored by 2 or 3, then it is colored properly and by Lemma 1 we can

color uk−1 by 1. Then we can properly color v to get a coloring of G, a contradiction. �

Lemma 6. If an 8-vertex v is incident with three poor (3, 3, 8)-faces, then it cannot be

incident with a semi-poor face, nor two pendant 3-faces.

Proof. Let v be an 8-vertex in G with 3 incident poor (3, 3, 8)-faces. Let u1, u2, · · · , u6 be

the 3-vertices in the poor (3, 3, 8)-face and let u′1, u
′
2, · · · , u′6 be the corresponding pendant

neighbors, respectively. We know that for all i with 1 ≤ i ≤ 6, d(u′i) ≤ 5.
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(i) Let vu7u8 be the incident semi-poor face with u7 being the poor 3-vertex. Then by

the minimality of G, G\{v, u1, u2, · · · , u7} is (3, 0, 0)-colorable. By Lemma 4, u1, u2, · · · , u6
can be colored by 1. Then if u8 is colored by 1, we can properly color u7 and then v to get

a coloring of G. So we may assume that u8 is not colored by 1, in which case it is nicely

colored and we may color u7 with 1 by Lemma 1, and then properly color v to get a coloring

of G, a contradiction.

(ii) Let u7 and u8 be the bad 3-vertices adjacent to v. Then G\{v, u1, u2, · · · , u7, u8} is

(3, 0, 0)-colorable, by the minimality of G. Properly color both u7 and u8. If either u7 or u8
is colored by 1 or both have the same color, then by Lemma 4, we may color u1, u2, · · · , u6
by 1 and then properly color v. So we may assume that u7 is colored by 2 and u8 is colored

by 3. Then we properly color u1, u2, · · · , u6, and it follows that for each i with 1 ≤ i ≤ 3,

u2i−1 and u2i must be colored differently. Then v can have at most 3 neighbors colored by

1, all properly colored, so v can be colored by 1, a contradiction. �

Lemma 7. If a 7-vertex v is incident with two poor (3, 3, 7)-faces, then it cannot be (i)

incident with a semi-poor (3, 6−, 7)-face and adjacent to a pendant 3-face, or (ii) adjacent to

three pendant 3-faces.

Proof. Let v be a 7-vertex in G with 2 incident poor (3, 3, 7)-faces. Let u1, u2, u3, and u4
be the 3-vertices on the poor (3, 3, 7)-faces and let u′1, u

′
2, u
′
3, and u′4 be their corresponding

pendant neighbors, respectively. We know that for all i with 1 ≤ i ≤ 4, d(u′i) ≤ 5.

(i) Let vu5u6 be a semi-poor face with u5 being a poor 3-vertex and d(u6) ≤ 6 and let

u7 be a bad 3-vertex adjacent to v. By the minimality of G, G\{v, u1, u2, u3, u4, u5, u7} is

(3, 0, 0)-colorable. Since at this point u6 has at most 4 colored neighbors, if u6 is colored by

1 then either it is nicely colored or it can be recolored properly. If u6 is not nicely colored,

then recolor u6 properly.

Color u7 properly. If u7 is colored by 1, then by Lemma 4, we can color u1, u2, · · · , u5 by 1

and then color v properly, a contradiction. So we may assume w.l.o.g. that u7 is colored by

2. Color u1, u2, · · · , u5 properly. Then, for each i with 1 ≤ i ≤ 3, u2i and u2i−1 are colored

differently and nicely. This leaves v with at most 3 neighbors colored by 1, all nicely, so we

may color v by 1 to get a coloring of G, a contradiction.

(ii) Let u5, u6, and u7 be the bad 3-vertices adjacent to v. By the minimality of G,

G\{v, u1, . . . , u7} is (3, 0, 0)-colorable. Properly color u5, u6, and u7. If the set {u5, u6, u7}
does not contain both colors 2 and 3, then by Lemma 4, we can color u1, u2, u3, and u4 by

1 and color v properly. So we can assume that both colors 2 and 3 appear on u5, u6, or u7.

This implies that at most one vertex is colored by 1. So we properly color u1, u2, u3, and

u4. Then v has at most 3 neighbors colored by 1, all nicely, so we can color v by 1 to get a

coloring of G, a contradiction. �

Lemma 8. Let uvw be a semi-poor (3, 7, 7)-face in G such that d(v) = d(w) = 7. Then

vertices v and w cannot both be 7-vertices that are incident with two poor 3-faces, one semi-

poor (3, 7, 7)-face, and have one pendant 3-face.
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Figure 3. Figure for Lemma 8

Proof. Let uvw be a semi-poor (3, 7, 7)-face in G such that d(v) = d(w) = 7 and both v and

w are incident with two poor 3-faces, one (3, 7, 7)-face, and adjacent to one pendant 3-face.

Let the neighbors of v and w be t1, t2, · · · , t5 and z1, z2, · · · , z5, respectively such that t5 and

z5 are bad 3-vertices (See figure 2).

By the minimality of G, G\{u, v, w, t1, t2, · · · , t5, z1, z2, · · · , z5} is (3, 0, 0)-colorable. By

Lemma 4, we can color t1, t2, t3, and t4 by 1. Then properly color t5, v, and z5 in that order.

Vertex v will not be colored by 1, so w.l.o.g. assume that v is properly colored by 2. If

z5 is colored by 1, then by Lemma 4 and Lemma 1, we can color z1, z2, z3, z4, and u by 1

and then properly color w, to get a coloring of G, a contradiction. So we can assume that

z5 is not colored by 1. Then we properly color z1, z2, z3, z4 and u, so w can have at most

three neighbors colored by 1, all properly. We can color w by 1 to get a coloring of G, a

contradiction. �

3. Discharging Procedure

We start the discharging process now. We let the initial charge of vertex u ∈ G be

µ(u) = 2d(u) − 6, and the initial charge of face f be µ(f) = d(f) − 6. Then by Euler’s

formula, we have

(1)
∑

v∈V (G)

µ(u) +
∑

f∈F (G)

µ(f) = −12.

Let a special semi-poor (3, 7, 7+)-face (see Figure 4) is a semi-poor 3-face incident with a

7-vertex which is also incident with two poor 3-faces and adjacent to one pendant 3-face.

We introduce the following discharging rules:

(R1) Every 4-vertex gives 1 to each incident 3-face.

(R2) Every 5 or 6-vertex gives 2 to each incident 3-face.

(R3) every 6+-vertex gives 1 to each adjacent pendant 3-face.
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Figure 4. A special semi-poor (3, 7, 7)-face.

(R4) Each d-vertex with 7 ≤ d ≤ 10 gives 3 to each incident poor (3, 3, ∗)-face, 2 to each

incident semi-poor 3-face, except 7-vertices give 1 to each incident special semi-poor

3-face. Each d-vertex with 7 ≤ d ≤ 10 gives 1 to all other incident 3-faces.

(R5) Every 11+-vertex gives 3 to all incident 3-faces.

Now let v be a k-vertex. By Proposition 1, k ≥ 3.

When k = 3, v is not involved in the discharging process, so µ∗(v) = µ(v) = 0.

When k = 4, by Proposition 1, v can have at most 2 incident 3-faces. By (R1), µ∗(v) ≥
µ(v)− 1 · 2 = 0.

When k = 5, by Proposition 1, v can have at most 2 incident 3-faces. By (R2), µ*(v) ≥
µ(v)− 2 · 2 = 0.

When k = 6, by Proposition 1, v can have α ≤ 3 incident 3-faces, and at most (k − 2α)

pendant 3-faces. By (R2) and (R3), µ∗(v) ≥ µ(v)− 2 · α− 1 · (k − 2α) = k − 6 = 0.

When k = 7, v has an initial charge µ(v) = 7 · 2 − 6 = 8. By Lemma 5, v has at most

two poor 3-faces. If v has less than two incident poor 3-faces, then by (R3) and (R4),

µ*(v) ≥ µ(v)− 3 · 1− 1 · 5 = 0 since v gives at most one charge per vertex excluding vertices

in poor 3-faces. So assume that v has exactly 2 incident poor 3-faces. By Lemma 7, v is

adjacent to at most two pendant 3-faces, and if it is incident with a semi-poor (3, 6−, 7)-face,

then v is not adjacent to a pendant 3-face. So if v is not incident with a semi-poor (3, 7+, 7)-

face, then by (R3) and (R4), µ∗(v) ≥ µ(v)− 3 · 2− 2 · 1 = 0; if v is incident with a semi-poor

(3, 7+, 7)-face, then by rules (R3) and (R4), µ∗(v) ≥ µ(v)− 3 · 2− 1 · 1− 1 · 1 = 0.

When k = 8, v has an initial charge µ(v) = 8 · 2 − 6 = 10. By Lemma 5, v has at

most three poor 3-faces. If v has less than 3 incident poor 3-faces, then by (R3) and (R4),

µ∗(v) ≥ µ(v) − 3 · 2 − 1 · 4 = 10 − 6 − 4 = 0 since v gives at most one charge per vertex

excluding vertices in poor 3-faces. So let v be incident with exactly 3 poor 3-faces. By

Lemma 6, v cannot be incident with a semi-poor 3-face or adjacent to two pendant 3-faces,

then µ∗(v) ≥ µ(v)− 3 · 3− 1 · 1 = 0.

When k = 9, by Lemma 5, v is incident with at most three poor 3-faces. The worst case

occurs when v is incident with three poor (3, 3, 9)-faces, one semi-poor (3, 3, 9)-face, and

one pendant 3-face, or when v is incident with three poor (3, 3, 9)-faces and three pendant

3-faces. So by (R3) and (R4), µ*(v) ≥ µ(v)− 1 · 1− 3 · 3− 2 · 1 = 12− 1− 9− 2 = 0.
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When k = 10, by Lemma 5, v is incident with at most four poor (3, 3, 10)-faces. So by

(R3) and (R4), µ∗(v) ≥ µ(v)− 3 · 4− 2 · 1 = 14− 3 · 4− 2 · 1 = 0.

When k ≥ 11, we assume that v is incident with α 3-faces, then by Proposition 1, α ≤
bk/2c. Thus the final charge of v is µ∗ ≥ 2k − 6− 3α− 1 · (k − 2α) = k − α− 6 ≥ 0.

Now let f be a k-face in G. By the conditions on G, k = 3 or k ≥ 6. When k ≥ 6, f is

not involved in the discharging procedure, so µ∗(f) = µ(f) = k − 6 ≥ 0. So in the following

we only consider 3-faces. Recall that the minimum degree of G is at least three, so there is

no (2−, 2+, 2+)-faces.

Case 1: f is a (4+, 4+, 4+)-face. By the rules, each 4+-vertex on f gives at least 1 to

f , so µ∗(f) ≥ µ(f) + 1 · 3 = 0.

Case 2: f is a (3, 4+, 4+)-face with vertices u, v, w such that d(u) = 3. If u is not

a poor 3-vertex, then by (R3), f gains 1 from the pendant neighbor of u and by the other

rules, f gains at least 2 from vertices on f , thus µ∗(f) ≥ µ(f)+1 ·3 = 0. If u is a poor vertex

(it follows that f is a semi-poor 3-face), then by Lemma 2, f is a (3, 4+, 6+)-face. Since v or

w is a 6+-vertex, it gives at least 2 to f unless f is a special semi-poor (3, 7, 7+)-face, and

as the other is a 4+-vertex, it gives at least 1 to f . Therefore, if f is not a special semi-poor

3-face at v or w, then µ∗(f) ≥ µ(f)+2 ·1+1 ·1 = 0; if f is a special semi-poor (3, 7, 8+)-face,

then f receives at least 2 from the 8+-vertex, so µ∗(v) ≥ µ(v) + 2 · 1 + 1 · 1 = 0. The only

left case is that f is a special semi-poor (3, 7, 7)-face for both v and w (so that both v and w

are incident with two poor 3-faces, one semi-poor (3, 7, 7)-face and adjacent to one pendant

3-face), but by Lemma 8, this situation is impossible.

Case 3: f is a (3, 3, 4+)-face with 4+-vertex v. If d(v) ≥ 11, then by (R5), µ∗(f) ≥
µ(f) + 3 = 0. So assume d(v) ≤ 10. By Lemma 2, if 4 ≤ d(v) ≤ 5, then each 3-vertex has

the pendant neighbor of degree 6 or higher. And by Lemma 3, if d(v) = 6, then the face is

non-poor. So by (R1) and (R3) (when d(v) = 4), µ∗(f) = µ(f) + 1 · 3 = 0, or by (R1) and

(R2) (when d(v) > 4), µ∗(f) ≥ µ(f) + 2 · 1 + 1 · 1 = 0.

Let 7 ≤ d(v) ≤ 10. If f is poor, then by (R4), µ∗(f) = µ(f) + 3 · 1 = 0. If f is semi-poor,

then one 3-vertex on f is adjacent to a 6+-vertex and thus by (R3) f gains 1 from it, together

with the 2 that f gains from v by (R4), we have µ∗(f) = µ(f) + 2 · 1 + 1 · 1 = 0. If f is

non-poor, then both 3-vertices on f are adjacent to the pendant neighbors of degrees more

than 5, thus by (R3) and (R4), µ∗(f) = µ(f) + 1 · 2 + 1 · 1 = 0.

Case 4: f is a (3, 3, 3)-face. By Lemma 2, each 3-vertex will have the pendant neighbor

of degree 6 or higher, so by (R3), µ∗(f) = µ(f) + 1 · 3 = 0.

Since for all x ∈ V ∪ F , µ∗(x) ≥ 0,
∑

v∈V µ
∗(v) +

∑
f∈F µ

∗(f) ≥ 0, a contradiction. This

completes the proof of Theorem 1.2.
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