
Section 2.4–2.5 Partitioned Matrices and LU
Factorization

Gexin Yu
gyu@wm.edu

College of William and Mary

Gexin Yu gyu@wm.edu Section 2.4–2.5 Partitioned Matrices and LU Factorization



partition matrices into blocks

In real world problems, systems can have huge numbers of equations
and un-knowns. Standard computation techniques are inefficient in
such cases, so we need to develop techniques which exploit the
internal structure of the matrices. In most cases, the matrices of
interest have lots of zeros.

One approach to simplify the computation is to partition a matrix
into blocks.

Ex: A =

 3 0 −1 5 9 −2
−5 2 4 0 −3 1

−8 −6 3 1 7 −4

.

This partition can also be written as the following 2× 3 block matrix:

A =

[
A11 A12 A13

A21 A22 A23

]
In the block form, we have blocks A11 =

[
3 0 −1
−5 2 4

]
and so on.
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Operations on partitioned matrices

(Addition and scalar multiplication) IF matrices A and B are the
same size and are partitioned in exactly the same way, namely
A = (Aij) and B = (Bij), then

A + B = (Aij + Bij), and rA = (rAij)

(multiplication) If the partitions of A and B are comfortable for block
multiplication, namely, the column partition of A matches the row
partition of B, then if A = (Aij)m×n and B = (Bij)n×p, then
AB = (Cij)m×p, where

Cij = Ai1Bij + Ai2B2j + . . . + AinBnj
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Example

Find AB, where

A =

 2 −3 1 0 −4
1 5 −2 3 −1

0 −4 −2 7 −1

 =

[
A11 A12

A21 A22

]
,B =


6 4
−2 1
−3 7

−1 3
5 2

 =

[
B1

B2

]

Soln:

AB =

[
A11 A12

A21 A22

] [
B1

B2

]
=

[
A11B1 + A12B2

A21B1 + A22B2

]

=

−5 4
−6 2

2 1



Gexin Yu gyu@wm.edu Section 2.4–2.5 Partitioned Matrices and LU Factorization



Example

Find AB, where

A =

 2 −3 1 0 −4
1 5 −2 3 −1

0 −4 −2 7 −1

 =

[
A11 A12

A21 A22

]
,B =


6 4
−2 1
−3 7

−1 3
5 2

 =

[
B1

B2

]

Soln:

AB =

[
A11 A12

A21 A22

] [
B1

B2

]
=

[
A11B1 + A12B2

A21B1 + A22B2

]

=

−5 4
−6 2

2 1


Gexin Yu gyu@wm.edu Section 2.4–2.5 Partitioned Matrices and LU Factorization



Example

Compute

[
A O
I B

] [
C I
O D

]
, where A,B,C and D are n × n, O is the

n × n zero matrix, and I is the n × n identity matrix.

Soln:

[
A O
I B

] [
C I
O D

]
=

[
AC AI
IC II + BD

]
=

[
AC A
C I + BD

]
If we do direct multiplication: to compute each term uses 2n
multiplications and 2n additions, or 4n flops (floating point
operations). Since there are 4n2 terms in the resulting matrix, direct
multiplication uses 4n · 4n2 = 16n3 flops.

In the above computation, to compute AC takes 2n · n2 flops, to
compute BD takes 2n · n2 flops, to add I + BD takes n flops, so
partitioned multiplication uses 4n3 + n? flops.

Take n = 1000. How many steps do we save?
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Inverse of Partitioned Matrices

A matrix of the form

[
A11 A12

0 A22

]
is said to be block upper triangular.

Assume that A11 is p × p, A22 is q × q, and A is invertible. Find a
formula for A−1.

Soln: Let A−1 be B and partition B so that[
A11 A12

0 A22

] [
B11 B12

B21 B22

]
=

[
Ip 0
0 Iq

]
So we will have

A11B11 + A12B21 = Ip (1)

A11B12 + A12B22 = 0 (2)

A22B21 = 0 (3)

A22B22 = Iq (4)
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As A is invertible, A22 must be invertible. So from (4), we get
B22 = A−1

22 , and from (3), we have B21 = 0.

As A is invertible, A11 must be invertible. So from (1) and B21 = 0,
we get B11 = A−1

11 .

From (2), we get A11B12 = −A12B22 = −A12A
−1
22 . So

B12 = −A−1
11 A12A

−1
22 .

So

A−1 =

[
A11 A12

0 A22

]−1

=

[
A−1
11 −A−1

11 A12A
−1
22

0 A−1
22

]
A block diagonal matrix is a partitioned matrix with zero blocks off
the main diagonal (of blocks). From the above example, such a
matrix is invertible if and only if each block on the diagonal is
invertible.
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Example: find the inverse of the following matrix


1 2 0 0 0
−1 2 0 0 0
0 0 3 0 0
0 0 0 3 2
0 0 0 −1 2



Gexin Yu gyu@wm.edu Section 2.4–2.5 Partitioned Matrices and LU Factorization



LU Factorization

An LU-factorization of an m × n matrix A is an equation that
expresses A as a product of an m ×m lower triangular matrix and an
m × n upper triangular matrix.

In particular, if A can be row reduced to echelon form without row
interchanges, then we could make the main diagonal of L to be 1s. Or

A = LU =


1 0 0 0 . . . 0
l21 1 0 0 . . . 0
l31 l32 1 0 . . . 0
. . .
lm1 lm2 lm3 . . . . . . 1



u11 u12 u13 . . . u1n
0 u22 u23 . . . u2n
0 0 u33 . . . u3n
. . .
0 0 0 . . . 0 unm


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Motivation for LU Factorization

If we want to solve the matrix equation Ax = b and we have
LU-factorization of A = LU, then we can the following:

Ax = LUx = L(Ux) = b so let y = Ux , we have Ly = b.

Solve Ly = b to get y .

Sove Ux = y to get x .
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An LU factorization algorithm

Suppose that A can be reduced to an echelon form U using only row
replacements that add a multiple of one row to another row below it.

So there are unit lower triangular elementary matrices E1,E2, . . . ,Ep

such that
Ep . . .E1A = U

Then A = (Ep . . .E1)−1U = LU, with

L = (Ep . . .E1)−1 = E−1
1 . . .E−1

p

The above argument suggests the following algorithm to find an LU
factorization of A:

1 Use row operations to reduce A to an upper triangles, and record the
elementary matrices E1,E2, . . . ,Ep.

2 Then L = E−1
1 . . .E−1

p . Or I = E1 . . .EpL.
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Example

Ex. Find an LU factorization of A =


2 4 −1 5 −2
−4 −5 3 −8 1
2 −5 −4 1 8
−6 0 7 −3 1

.

We first reduce A to an upper triangular form by row operations, and
record each step with an elementary matrix.

A→


2 4 −1 5 −2
0 3 1 2 −3
0 −9 −3 −4 10
0 12 4 12 −5

 = A1 (5)

→


2 4 −1 5 −2
0 3 1 2 −3
0 0 0 2 1
0 0 0 4 7

→


2 4 −1 5 −2
0 3 1 2 −3
0 0 0 2 1
0 0 0 0 5

 = U (6)
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In the first step, we used row operations R2 + 2R1, R3− R1,
R4 + 3R1, which corresponds to elementary matrices

E1 =


1 0 0 0
2 1 0 0
0 0 1 0
0 0 0 1

 ,E2 =


1 0 0 0
0 1 0 0
−1 0 1 0
0 0 0 1

 ,E3 =


1 0 0 0
0 1 0 0
0 0 1 0
3 0 0 1

 .

In the second step, we used row operations R3 + 3R2,R4− 4R2,
which corresponds to elementary matrices

E4 =


1 0 0 0
0 1 0 0
0 3 1 0
0 0 0 1

 ,E5 =


1 0 0 0
0 1 0 0
0 0 1 0
0 −4 0 1


In the last step, the row operation is R4− 2R3, and the

corresponding elementary matrix is E6 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 −2 1

 ,
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One important observation (the position of d could be anywhere):

if E =


1 0 0 0
d 1 0 0
0 0 1 0
0 0 0 1

 , then E−1 =


1 0 0 0
−d 1 0 0
0 0 1 0
0 0 0 1



So (pay attend to the result)

L1 = E−1
1 E−1

2 E−1
3 I =


1 0 0 0
−2 1 0 0
1 0 1 0
−3 0 0 1


Thus

L = L1E
−1
4 E−1

5 E−1
6 =


1 0 0 0
−2 1 0 0
1 −3 1 0
−3 4 2 1


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