1.5 EXERCISES

In Exercises 1-4, determine if the system has a nontrivial solution. Try to use as few row operations as possible.

1.
$$2x_1 - 5x_2 + 8x_3 = 0$$
 2. $x_1 - 2x_2 + 3x_3 = 0$ $-2x_1 - 7x_2 + x_3 = 0$ $-2x_1 - 3x_2 - 4x_3 = 0$ $4x_1 + 2x_2 + 7x_3 = 0$ $2x_1 - 4x_2 + 9x_3 = 0$

3.
$$-3x_1 + 4x_2 - 8x_3 = 0$$
 4. $5x_1 - 3x_2 + 2x_3 = 0$ $-2x_1 + 5x_2 + 4x_3 = 0$ $-3x_1 - 4x_2 + 2x_3 = 0$

In Exercises 5 and 6, follow the method of Examples 1 and 2 to write the solution set of the given homogeneous system in parametric vector form.

5.
$$2x_1 + 2x_2 + 4x_3 = 0$$
 6. $x_1 + 2x_2 - 3x_3 = 0$ $-4x_1 - 4x_2 - 8x_3 = 0$ $2x_1 + x_2 - 3x_3 = 0$ $-1x_1 + x_2 = 0$

In Exercises 7–12, describe all solutions of $A\mathbf{x} = \mathbf{0}$ in parametric vector form, where A is row equivalent to the given matrix.

7.
$$\begin{bmatrix} 1 & 3 & -3 & 7 \\ 0 & 1 & -4 & 5 \end{bmatrix}$$
 8. $\begin{bmatrix} 1 & -3 & -8 & 5 \\ 0 & 1 & 2 & -4 \end{bmatrix}$

8.
$$\begin{bmatrix} 1 & -3 & -8 & 5 \\ 0 & 1 & 2 & -4 \end{bmatrix}$$

$$9. \begin{bmatrix} 3 & -6 & 6 \\ -2 & 4 & -2 \end{bmatrix}$$

9.
$$\begin{bmatrix} 3 & -6 & 6 \\ -2 & 4 & -2 \end{bmatrix}$$
 10.
$$\begin{bmatrix} -1 & -4 & 0 & -4 \\ 2 & -8 & 0 & 8 \end{bmatrix}$$

11.
$$\begin{bmatrix} 1 & -4 & -2 & 0 & 3 & -5 \\ 0 & 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 & -4 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

12.
$$\begin{bmatrix} 1 & -2 & 3 & -6 & 5 & 0 \\ 0 & 0 & 0 & 1 & 4 & -6 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

- 13. Suppose the solution set of a certain system of linear equations can be described as $x_1 = 5 + 4x_3$, $x_2 = -2 - 7x_3$, with x_3 free. Use vectors to describe this set as a line in \mathbb{R}^3 .
- 14. Suppose the solution set of a certain system of linear equations can be described as $x_1 = 5x_4$, $x_2 = 3 - 2x_4$, $x_3 = 2 + 5x_4$, with x_4 free. Use vectors to describe this set as a "line" in \mathbb{R}^4 .
- **15.** Describe and compare the solution sets of $x_1 + 5x_2 3x_3 = 0$ and $x_1 + 5x_2 - 3x_3 = -2$.
- **16.** Describe and compare the solution sets of $x_1 2x_2 +$ $3x_3 = 0$ and $x_1 - 2x_2 + 3x_3 = 4$.
- 17. Follow the method of Example 3 to describe the solutions of the following system in parametric vector form. Also, give a geometric description of the solution set and compare it to that in Exercise 5.

$$2x_1 + 2x_2 + 4x_3 = 8$$

$$-4x_1 - 4x_2 - 8x_3 = -16$$

$$-3x_2 - 3x_3 = 12$$

18. As in Exercise 17, describe the solutions of the following system in parametric vector form, and provide a geometric comparison with the solution set in Exercise 6.

$$x_1 + 2x_2 - 3x_3 = 5$$

 $2x_1 + x_2 - 3x_3 = 13$
 $-x_1 + x_2 = -8$

In Exercises 19 and 20, find the parametric equation of the line through a parallel to b.

19.
$$\mathbf{a} = \begin{bmatrix} -2 \\ 0 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} -5 \\ 3 \end{bmatrix}$$
 20. $\mathbf{a} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} -7 \\ 6 \end{bmatrix}$

In Exercises 21 and 22, find a parametric equation of the line M through **p** and **q**. [Hint: M is parallel to the vector $\mathbf{q} - \mathbf{p}$. See the figure below.]

21.
$$\mathbf{p} = \begin{bmatrix} 3 \\ -3 \end{bmatrix}, \mathbf{q} = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$$
 22. $\mathbf{p} = \begin{bmatrix} -3 \\ 2 \end{bmatrix}, \mathbf{q} = \begin{bmatrix} 0 \\ -3 \end{bmatrix}$

In Exercises 23 and 24, mark each statement True or False. Justify each answer.

- 23. a. A homogeneous equation is always consistent.
 - b. The equation $A\mathbf{x} = \mathbf{0}$ gives an explicit description of its solution set.
 - c. The homogeneous equation $A\mathbf{x} = \mathbf{0}$ has the trivial solution if and only if the equation has at least one free
 - d. The equation $\mathbf{x} = \mathbf{p} + t\mathbf{v}$ describes a line through \mathbf{v} parallel to p.
 - The solution set of $A\mathbf{x} = \mathbf{b}$ is the set of all vectors of the form $\mathbf{w} = \mathbf{p} + \mathbf{v}_h$, where \mathbf{v}_h is any solution of the equation $A\mathbf{x} = \mathbf{0}$.
- 24. a. A homogeneous system of equations can be inconsistent.
 - b. If \mathbf{x} is a nontrivial solution of $A\mathbf{x} = \mathbf{0}$, then every entry in x is nonzero.
 - The effect of adding \mathbf{p} to a vector is to move the vector in a direction parallel to p.
 - d. The equation $A\mathbf{x} = \mathbf{b}$ is homogeneous if the zero vector is a solution.

e. If $A\mathbf{x} = \mathbf{b}$ is consistent, then the solution set of $A\mathbf{x} = \mathbf{b}$ is obtained by translating the solution set of $A\mathbf{x} = \mathbf{0}$.

25. Prove Theorem 6:

- a. Suppose **p** is a solution of A**x** = **b**, so that A**p** = **b**. Let \mathbf{v}_h be any solution of the homogeneous equation A**x** = **0**, and let $\mathbf{w} = \mathbf{p} + \mathbf{v}_h$. Show that \mathbf{w} is a solution of A**x** = \mathbf{b} .
- b. Let \mathbf{w} be any solution of $A\mathbf{x} = \mathbf{b}$, and define $\mathbf{v}_h = \mathbf{w} \mathbf{p}$. Show that \mathbf{v}_h is a solution of $A\mathbf{x} = \mathbf{0}$. This shows that every solution of $A\mathbf{x} = \mathbf{b}$ has the form $\mathbf{w} = \mathbf{p} + \mathbf{v}_h$, with \mathbf{p} a particular solution of $A\mathbf{x} = \mathbf{b}$ and \mathbf{v}_h a solution of $A\mathbf{x} = \mathbf{0}$.
- **26.** Suppose *A* is the 3×3 zero matrix (with all zero entries). Describe the solution set of the equation $A\mathbf{x} = \mathbf{0}$.
- 27. Suppose $A\mathbf{x} = \mathbf{b}$ has a solution. Explain why the solution is unique precisely when $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.

In Exercises 28–31, (a) does the equation $A\mathbf{x} = \mathbf{0}$ have a nontrivial solution and (b) does the equation $A\mathbf{x} = \mathbf{b}$ have at least one solution for every possible \mathbf{b} ?

28. A is a 3×3 matrix with three pivot positions.

29. A is a 4×4 matrix with three pivot positions.

30. A is a 2×5 matrix with two pivot positions.

31. *A* is a 3×2 matrix with two pivot positions.

32. If $\mathbf{b} \neq \mathbf{0}$, can the solution set of $A\mathbf{x} = \mathbf{b}$ be a plane through the origin? Explain.

33. Construct a 3 \times 3 nonzero matrix A such that the vector $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$

is a solution of $A\mathbf{x} = \mathbf{0}$.

- **34.** Construct a 3×3 nonzero matrix A such that the vector $\begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$ is a solution of $A\mathbf{x} = \mathbf{0}$.
- **35.** Given $A = \begin{bmatrix} -1 & -3 \\ 7 & 21 \\ -2 & -6 \end{bmatrix}$, find one nontrivial solution of

 $A\mathbf{x} = \mathbf{0}$ by inspection. [*Hint*: Think of the equation $A\mathbf{x} = \mathbf{0}$ written as a vector equation.]

- **36.** Given $A = \begin{bmatrix} 3 & -2 \\ -6 & 4 \\ 12 & -8 \end{bmatrix}$, find one nontrivial solution of $A\mathbf{x} = \mathbf{0}$ by inspection.
- **37.** Construct a 2×2 matrix A such that the solution set of the equation $A\mathbf{x} = \mathbf{0}$ is the line in \mathbb{R}^2 through (4, 1) and the origin. Then, find a vector \mathbf{b} in \mathbb{R}^2 such that the solution set of $A\mathbf{x} = \mathbf{b}$ is *not* a line in \mathbb{R}^2 parallel to the solution set of $A\mathbf{x} = \mathbf{0}$. Why does this *not* contradict Theorem 6?
- **38.** Let A be an $m \times n$ matrix and let \mathbf{w} be a vector in \mathbb{R}^n that satisfies the equation $A\mathbf{x} = \mathbf{0}$. Show that for any scalar c, the vector $c\mathbf{w}$ also satisfies $A\mathbf{x} = \mathbf{0}$. [That is, show that $A(c\mathbf{w}) = \mathbf{0}$.]
- **39.** Let A be an $m \times n$ matrix, and let \mathbf{v} and \mathbf{w} be vectors in \mathbb{R}^n with the property that $A\mathbf{v} = \mathbf{0}$ and $A\mathbf{w} = \mathbf{0}$. Explain why $A(\mathbf{v} + \mathbf{w})$ must be the zero vector. Then explain why $A(c\mathbf{v} + d\mathbf{w}) = \mathbf{0}$ for each pair of scalars c and d.
- **40.** Suppose A is a 3×3 matrix and \mathbf{b} is a vector in \mathbb{R}^3 such that the equation $A\mathbf{x} = \mathbf{b}$ does *not* have a solution. Does there exist a vector \mathbf{y} in \mathbb{R}^3 such that the equation $A\mathbf{x} = \mathbf{y}$ has a unique solution? Discuss.

SOLUTIONS TO PRACTICE PROBLEMS

1. Row reduce the augmented matrix:

$$\begin{bmatrix} 1 & 4 & -5 & 0 \\ 2 & -1 & 8 & 9 \end{bmatrix} \sim \begin{bmatrix} 1 & 4 & -5 & 0 \\ 0 & -9 & 18 & 9 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 3 & 4 \\ 0 & 1 & -2 & -1 \end{bmatrix}$$
$$x_1 + 3x_3 = 4$$
$$x_2 - 2x_3 = -1$$

Thus $x_1 = 4 - 3x_3$, $x_2 = -1 + 2x_3$, with x_3 free. The general solution in parametric vector form is

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 4 - 3x_3 \\ -1 + 2x_3 \\ x_3 \end{bmatrix} = \begin{bmatrix} 4 \\ -1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -3 \\ 2 \\ 1 \end{bmatrix}$$

The intersection of the two planes is the line through \mathbf{p} in the direction of \mathbf{v} .