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Abstract

In 1976, Steinberg conjectured that every planar graph without 4-cycles and 5-cycles is 3-colorable.

Borodin and Raspaud (2003) further conjectured that every planar graph without 5-cycles and K−4 is

3-colorable. In 2016, these two conjectures are disproved by Cohen–Addad and others. Now in this

paper, we prove a relaxation of Strong Bordeaux Conjecture that every planar graph without 5-cycles

and adjacent triangles and adjacent 4-cycles is (2, 0, 0)-colorable which improves the results of Chen,

Wang, Liu and Xu (2016) and of Liu, Li and Yu (2015).

1 Introduction

It is well-known that deciding whether a planar graph is properly 3-colorable is a NP-complete problem.

Grötzsch
G59
[9] proved the famous theorem that every triangle-free planar graph is 3-colorable. Steinberg in

1976 made the following conjecture
S76
[16].

conj1 Conjecture 1.1 (Steinberg,
S76
[16]) All planar graphs without 4-cycles and 5-cycles are 3-colorable.

This conjecture was disproved by Cohen–Addad et al.
Kral
[7] recently. However, Erdős suggested to find a

constant c such that a planar graph without cycles of length from 4 to c is 3-colorable. The best constant

so far is c = 7, found by Borodin, Glebov, Raspaud, and Salavatipour
BGRS05
[4].

A graph is (c1, c2, . . . , ck)-colorable if the vertex set can be partitioned into k sets V1, V2, . . . , Vk, such

that for every i, the subgraph G[Vi] has maximum degree at most ci, where 1 ≤ i ≤ k. Improper colorability

of graphs has been extensively studied. For more results, see
HSWXY13, W14, XMW12, XW13
[12, 6, 19, 20] and the survey by Borodin

B12
[1].

As usual, a 3-cycle is also called a triangle. Havel in
H69
[10] asked if each planar graph with large enough

distances between triangles is (0, 0, 0)-colorable. This was resolved by Dvor̈ák, Král and Thomas
DKT09
[8]. We

say that two cycles are adjacent if they have at least one edge in common and intersecting if they have at

least one common vertex. A graph contains a pair of adjacent triangles if and only if it contains a K−4 as a

subgraph. Borodin and Raspaud in 2003 made the following two conjectures, which have common features

with Havel’s and Steinberg’s 3-color problems.

con2 Conjecture 1.2 (Bordeaux Conjecture,
BR03
[5]) Every planar graph without 5-cycles and intersecting 3-

cycles and is 3-colorable.

con3 Conjecture 1.3 (Strong Bordeaux Conjecture,
BR03
[5]) Every planar graph without 5-cycles and K−4 is

3-colorable.
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Let G be a plane graph. Denote by d∇ the minimum distance between two triangles in G. A relaxation

of the Bordeaux Conjecture with d∇ ≥ 4 was confirmed by Borodin and Rauspaud
BR03
[5], and the result was

improved to d∇ ≥ 3 by Borodin and Glebov
BG04
[2] and, independently, by Xu

X07
[17]. Borodin and Glebov

BG11
[3]

further improved the result to d∇ ≥ 2.

For relaxations of Conjecture
con2
1.2, Liu, Li and Yu

LLY15a, LLY15b
[14, 15] proved that every planar graph without 5-cycles

and intersecting 3-cycles is (2, 0, 0)-colorable and (1, 1, 0)-colorable. Conjecture
con3
1.3 was also disproved by

Cohen–Addad et al.
Kral
[7] recently. Xu

X08
[18] showed that every graph without 5-cycles nor K−4 is (1, 1, 1)-

colorable, which was improved to be (1, 1, 0)-colorable by Huang, Li and Yu
HLY
[11]. One may naturally ask

the following question.

prob1 Problem 1.4 Every graph without 5-cycles nor K−4 is (1, 0, 0)-colorable.

On the other hand, Chen et al.
W14
[6] proved that every planar graph without 5-cycles nor 4-cycle is

(2, 0, 0)-colorable. Motivated by Problem
prob1
1.4 and the result of Chen et al.

W14
[6], we consider G , the family of

plane graph without 5-cycle nor two adjacent 3-cycles nor two adjacent 4-cycles. Here is our main result.

th2 Theorem 1.5 Every planar graph without 5-cycles, or K−4 , or adjacent 4-cycles is (2,0,0)-colorable.

We actually prove something stronger. Let G be a plane graph and H be an induced subgraph of G.

We call (G,H) is superextendable if every (2, 0, 0)-coloring of H can be extended to a (2, 0, 0)-coloring of G

such that the vertices in G −H have different colors from their neighbors in H. Let G ∈ G . An induced

k-cycle C of G, where k ∈ {3, 7, 9}, is bad if (G,C) is not superextended. Thus, the outer cycle in Bi with

i ∈ [6] shown in Figure
fig1
1 is a bad cycle. An induced k-cycle is good if it is not bad, where k ∈ {3, 7, 9}.

Figure 1: Six bad cycles fig1

th1 Theorem 1.6 Every triangle or induced 7-cycle or induced good 9-cycle of planar graph in G is superex-

tendable.

Proof of Theorem
th2
1.5 via Theorem

th1
1.6: Let G be a graph in G . If G is triangle-free, then G is

3-colorable by the Gröztch Theorem, and is naturally (2, 0, 0)-colorable. Thus, assume that G has a triangle.

Then every (2, 0, 0)-coloring of this triangle can be superextended to the whole graph G by Theorem
th1
1.6.

So, Theorem
th2
1.5 follows.2

2 Reducible Configurations

All the graphs considered in this paper are finite and simple. For each v ∈ V (G), we use d(v) to denote

the degree of v, and N(v) to denote the vertex set of neighbors of v. For a face f of G, we use V (f) to

denote the vertex set on f and d(f) to denote the degree of f . A k-vertex (k+-vertex, k−-vertex) is a vertex

of degree k (at least k, at most k). The same notation will apply to faces and cycles. For a face f of G,

we write f = [u1u2 . . . uk] if u1, u2, . . . , uk are consecutive vertices on f in a cyclic order, and we say that f

is a (d(u1), d(u2), . . . , d(uk))-face. A face f is a pendent 3-face of vertex v if v is not on f but is adjacent

to some 3-vertex on f . A pendent neighbor, denoted by v′, of a 3-vertex v on a 3-face is the neighbor of v

not on the 3-face. If an edge uv is not an edge of any triangle, then u is called an isolated neighbor of v. A
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vertex is k-triangular if it is incident with k triangles. Note that G has no adjacent triangles. If a vertex is

k-triangular, then it has degree at least 2k. The boundary of the unbounded face of a plane graph is called

the outer cycle if it is a cycle.

Let C be a cycle of a plane graph G. We use int(C) and ext(C) to denote the sets of vertices located

inside and outside C, respectively. The cycle C is called a separating cycle if int(C) 6= ∅ 6= ext(C), and is

called a nonseparating cycle otherwise. We still use C to denote the set of vertices of C.

Let S1, S2, . . . , Sl be pairwise disjoint subsets of V (G). We use G[S1, S2, . . . , , Sl] to denote the graph

obtained from G by identifying all the vertices in Si to a single vertex for each i ∈ {1, 2, . . . , l}. Let vxy be

the new vertex by identifying x and y in G.

A vertex v is properly colored if all neighbors of v have different colors from v. A vertex v is nicely

colored if it shares a color (say i) with at most max {si − 1, 0} neighbors, where si is the deficiency allowed

for color i.

Let (G,C0) be a minimum counterexample to Theorem
th1
1.6 with minimum σ(G) = |V (G)| + |E(G)|,

where C0 is an outer cycle of the unbounded face of G that is precolored and we further assume that C0 is

an induced outer cycle. Some earlier results from
LLY15a, W14

[14, 6] are stated in the following lemmas since the results

of our lemmas can be proved similarly from their proofs.

Lemma 2.1 Each of the following is true.le1

(1) Every vertex not on C0 is a 3+-vertex.

(2) A 3-face cannot share a common edge with a 4-face in G.

(3) No two 3-faces in G are adjacent.

(4) (Lemma 3.2
LLY15a
[14]) There is no separating good induced k-cycle, where k ∈ {3, 7, 9}.

(5) (Lemma 3.8
LLY15a
[14]) A 3-vertex must be adjacent to a 5+-vertex or a vertex on C0. Consequently, the

pendent neighbor of the 3-vertex of a (3, 4, 4)-face in int(C0) is a 5+-vertex or a vertex in C0.

(6) (Lemma 3.9
LLY15a
[14]) The pendent neighbor of the 3-vertices in a (3, 3, 5−)-face in int(C0) is a 5+-vertex

or a vertex on C0.

An edge e = uv is called a (k1, k2)-chord of cycle C if u, v ∈ C and the two paths between u, v on C and

e form two cycles of lengths k1 and k2, respectively. Since G has no adjacent cycles of length at most five,

the following remark is straightforward.

rmk1 Remark 2.1 Let C be a cycle in G.

(1) If |C| = 3, 4, 6, then C has no chord.

(2) If |C| = 7, then C has at most one (3, 6)-chord.

(3) If |C| = 9, then C has at most three chords. If C has one chord, then it has a (4−, k)-chord, where

k ∈ {7, 8}. If C has two chords, then C has either a (4, 7)-chord and a (3, 8)-chord or two (3, 8)-chords. If

C has three chords, then it has either a (4, 7)-chord and two (3, 8)-chords or three (3, 8)-chords.

le00 Lemma 2.2 Let C = u1u2 . . . uk be a cycle of G.

• If k = 4, 6, then int(C) = ∅. So there is no separating 4- or 6-cycle.

• Let k = 8. If int(C) 6= ∅, then C is the outer face in B6 in Fig.
fig1
1. If int(C) = ∅, then C has at

most two chords. Moreover, if C has one chord, then it is a (3, 7)-chord or a (4, 6)-chord; if C has two

chords, then they are (3, 7)-chords.

Proof. Suppose otherwise that k ∈ {4, 6} and int(D) 6= ∅. Let G′ = G − int(C). By the minimality

of G, (G′, C0) can be superextended to a (2, 0, 0)-coloring of G′. It follows that C has a (2, 0, 0)-coloring.

If k = 4, let C ′ = u1w1w2w3u2u3u4 and properly color w1, w2, w3. If k = 6, let C ′ = u1w1u2u3u4u5u6 and

properly color w1. Then C ′ is a precolored 7-cycle. By minimality of G, (C ′∪ int(C), C ′) is superextendable

and thus (G,C) is (2, 0, 0)-colorable, a contradiction.

Now let k = 8 and assume that C is not the outer face in B6. Assume first that int(C) 6= ∅. Then

(G−
∫

(C), C0) is (2, 0, 0)-colorable and we obtain a coloring of vertices of C. Let C ′ = u1w1u2u3u4u5u6u7u8
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and properly color w1. By minimality of G, if C ′ is not one of outer faces in B1, . . . , B6 in Figure 1, then

(C ′ ∪ int(C), C ′) is superextendable and thus (G,C) is (2, 0, 0)-colorable, a contradiction. Thus, C ′ is one

of the outer faces in B1, . . . , B5. Since G has no 5-cycle, w1 cannot be on a 6-cycle. Thus, C ′ can only be

in B4 or B5, and before adding w1, C must be the outer face in B6, a contradiction. Now let int(C) = ∅. If

C has a (3, 7)-chord, then another possible chord of C can only be a (3, 7)-chord; if C has no (3, 7)-chord,

then the only possible chord is a (4, 6)-chord.

2p Lemma 2.3 If P = xyz is a path with x, z ∈ C0 and y ∈ int(C0), then xz ∈ E(G).

Proof. Suppose otherwise that xz /∈ E(G). Let P1 and P2 be the two paths between x and z on C0,

Ci = Pi ∪P and Gi = int(Ci) for i = 1, 2. Then |Ci| ≥ 4 for i = 1, 2. We may assume that 4 ≤ |C1| ≤ |C2|.
Since |C1|+ |C2| ≤ 13 and G has no 5-cycles, |C1| ∈ {4, 6}.

Assume first that |C1| = 4. By Remark
rmk1
2.1 (1) and Lemma

le00
2.2, C1 is a 4-face. Since |C0| ∈ {3, 7, 9},

|C2| ∈ {7, 9}. By Lemma
le1
2.1(1), d(y) ≥ 3. Let y′ be a neighbor of y rather than x and z. Since G contains

no 5-cycle or K−4 , y′ /∈ C0. So all neighbors of y are in int(C2). By Lemma
le1
2.1(4), C2 must be a bad 9-cycle.

If d(y) ≥ 4, then C2 is the outer face in B2 in Figure
fig1
1, which implies that a 3-neighbor y′ ∈ int(C0) of y

has no 5+-neighbors in int(C0), contrary to Lemma
le1
2.1(5). Thus, d(y) = 3. Since G has no 5-cycle or K−4 ,

C2 is not in B2, B4, B5 or B6. If y is in B1, then C0 is the outer face of B5, a contradiction. If y is in B3,

then G contains a 3-vertex in int(C0) that has no 5+-neighbors, contrary to Lemma
le1
2.1(5).

Thus, |C1| = 6. Since |C0| ∈ {7, 9}, |C2| = 7. Since G contains no separating 7-cycle, y has no neighbor

in int(C2). By Lemma
le00
2.2, y has no neighbor in int(C1). Since d(y) ≥ 3, a neighbor (say y′) of y must

be on P1 or P2. But since G has no 5-cycle or K−4 , yy′ must be a (3, 6)-chord on C2, which implies a B4

containing C0 as outer face, a contradiction.

3p Lemma 2.4 If P = wxyz is a path with w, z ∈ C0 and x, y ∈ int(C0), then wz ∈ E(G).

Proof. Suppose to the contrary that wz /∈ E(G). Let P1 and P2 be the two paths between w and z on

C0, Ci = Pi ∪ P , and Gi = int(Ci), where i = 1, 2. By Lemma
le1
2.1(1), d(x) ≥ 3 and d(y) ≥ 3 and let x′ be

a neighbor of x other than w, y and y′ be a neighbor of y other than x, z. Then |Ci| ≥ 6 for i = 1, 2 since

G has no 5-cycles. We may assume that 6 ≤ |C1| ≤ |C2|. Since |C1| + |C2| = |C0| + 6 ≤ 15, |C1| ∈ {6, 7}.
We consider the following two cases.

We first assume that |C1| = 6. By Lemma
le00
2.2, C1 is a face. In this case, |C2| ∈ {6, 7, 9}. If |C2| = 6, then

C2 is also a 6-faces by Lemma
le00
2.2. It follows that d(x) = d(y) = 2, contrary to Lemma

le1
2.1(1). If |C2| = 7,

then C2 has at most one (3, 6)-chord by Lemma
le1
2.1(4). It follows that either d(x) = 2 or d(y) = 2, contrary

to Lemma
le1
2.1(1). Finally, assume that |C2| = 9. If C2 is good, then C2 has two (2, 8)-chords. In this case,

C0 has one bad partition of B4 and B5, a contradiction. Thus, assume that C2 has a bad partition. Since

both x and y are 3+-vertices, C2 has no bad partition B3. If C2 has the bad partition B1, then C0 has a

bad partition B3, a contradiction. If C2 has one bad partition of B2, B4, B5, then G has a 3-vertex x′ in

int(C0) which has no 5+-neighbor in int(C0) nor a neighbor on C0, contrary to Lemma
le1
2.1(2).

We now assume that |C1| = 7. Then C1 is good and at most one (3, 6)-chord. In this case, |C2| = 8. By

Lemma
le00
2.2, C2 has a bad partition B6 or C2 has at most two chords. In the former case, if C1 has no chord,

then G has a 3-vertex x′ in int(C0) which has no 5+-neighbor in int(C0) nor a neighbor on C0, contrary to

Lemma
le1
2.1(2); if C1 has one (3, 6)-chord, then C0 has the bad partition B2, a contradiction. In the latter

case, since both x and y are 3+-vertices and C1 has at most one (3, 6)-chord and C2 has at most two (3, 6),

C0 has the bad partition B4, a contradiction.

4p Lemma 2.5 (1) If P = vwxyz is a path with v, z ∈ C0 and w, x, y ∈ int(C0), then P and one of the two

paths of C0 between v and z form a k-cycle, where k ∈ {6, 7}.
(2) (

W14
[6])If P = uvwxyz is a path with u, z ∈ C0 and v, w, x, y ∈ int(C0), then P and one of the two

paths between u and z form a k-cycle, where k ∈ {6, 7, 8, 9}.

Proof. (1) Let P1 and P2 be the two paths between w and z on C0. For i = 1, 2, let Ci = Pi ∪ P ,

and Gi = int(Ci). By way of contradiction, we assume that 8 ≤ |C1| ≤ |C2|. By Lemma
3p
2.4, we may
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assume that vx,wy, xz, vy, wz /∈ E(G). Since |C1| + |C2| ≤ |C0| + 8 ≤ 17, |C1| = 8 and |C2| ∈ {8, 9}.
By Lemma

le1
2.1(1), min{d(x), d(y), d(w)} ≥ 3, let x′, y′, w′ be a neighbor of x, y, z not in {v, w, x, y, z},

respectively. By Lemma
le00
2.2, C1 is the outer face in B6 or C1 has at most two chords.

First let |C2| = 8. Then C1 or C2 contains x′, y′ or w′, so at least one of them is the outer face in B6.

If x′ is not on C0, then x′ is in a B6, but then x′ has no 5+-neighbors. So x′ must be a vertex on C0,

and by Lemma
le00
2.2, x′ can only be on a (4, 6)-chord. We may assume that C1 contains this (4, 6)-chord.

This implies that w′ cannot be on a (3, 7)- or (4, 6)-chord, so it is in int(C2), then C2 is the outer face of

a B6. But then G contains a 5-cycle which is formed by the 4-cycle containing x′ and a triangle of B6, a

contradiction.

Thus, assume that |C2| = 9. First let x′ be a vertex on C0. Then x′ is on (4, 6)-chord, we may assume

that x′ is next to v on C0. If x′ ∈ P2, then ww′ cannot be on a chord of C1, so w′ ∈ int(C1), thus C1 must

be the outer face of a B6. It follows that vw is on a triangle, which together with the 4-cycle containing

xx′ forms a 5-cycle, a contradiction. If x′ ∈ P1, then C ′ = x′, x, y, z, P2, v is a 9-cycle so that w ∈ int(C ′).
Then C ′ must be the outer face of Bi for some i ∈ [5], which contains a 4-cycle wxx′v. So C ′ is on B5. Now

y′ cannot be on C0 or int(C0), a contradiction. So we may assume that x′ ∈ int(C0). If x′ ∈ int(C1), then

C1 is the outer face of B6, so x ∈ int(C0) and x has no 5+-neighbors or neighbors on C0, a contradiction.

So let x′ ∈ int(C2). Then C2 is the outer face of Bi for some i ∈ [5]. Then again, x has no 5+-neighbors or

neighbors on C0, a contradiction.

We now give two useful technique lemmas on identifying vertices.

le12 Lemma 2.6 Let the neighbors of a k-vertex v ∈ int(C0) be v1, v2, . . . , vk in the clockwise order in the

embedding of G with vk+1 = v1 and k ≥ 4. Let vi and vj be two nonconsecutive neighbors of v. If G′ is the

graph obtained by identifying vi and vj of G− v, where i < j, then G′ ∈ G.

Proof. Since vi and vj are two nonconsecutive neighbors of v, vi is not adjacent to vj since G has no

separating 3-cycle by Lemma
le1
2.1. By Lemma

2p
2.3, at least one of vi and vj is not on C0. Thus, we do not

identify two vertices of C0. We first show that G′ has no chord. Suppose otherwise that G′ has a chord.

Then the chord contains the vertex vvivj . This implies that there is a 3-path vivvju (or vjvviu), where vi
(or vj) and u are on C0. By Lemma

3p
2.4, vivju (or vjvviu) is a 4-cycle and vi+1 is it, contrary to Lemma

le00
2.2.

Finally, we show that no k-cycle with k ≤ 5 contains the vertex vvivj . Suppose otherwise. If k = 3, G

contains a separating 5-cycle containing vivvj , contrary to Lemma
le1
2.1. If k = 4, then G contains a 6-cycle

containing vivvj with vi+1 in it, contrary to Lemma
le00
2.2. If k = 5, G contains a separating 7-cycle containing

vivvj , contrary to Lemma
le1
2.1.

le12a Lemma 2.7 Let v ∈ int(C0) be a 3-triangular 7-vertex or a 4-triangular 8-vertex with N [v0] ⊆ int(C0). Let

v1, v2, . . . , vk be the neighbors of v ∈ int(C0) in the clockwise order in the embedding of G with vk+1 = v1.

Let vi and vj be two nonconsecutive 3-neighbors of v such that vi and vj are on two distinct 3-faces, let v′i
and v′j be the outer neighbors of vi and vj, respectively. Let G′ be the graph obtained by identifying v′i and

v′j of G− {v, vi, vj}. Then G′ ∈ G if one of the following holds.

(1) k = 7, 8, j = i+ 4 and [vivvi+1] and [vjvvj+1] are both 3-faces.

(2) k = 7, j = i+ 3 and [vivvi+1] and [vj−1vvj ] are both 3-faces.

Proof. We first show that at most one of v′i, v
′
j is on C0. For otherwise, by Lemma

4p
2.5 (1), there is a 6-

or 7-cycle containing v′i and v′j , and the cycle is separating, a contradiction to Lemma
le1
2.1(4) and

le00
2.2. This

implies that we do not destroy the cycle C0 by identifying vertices.

Now we show that the identification creates none of the following: a chord on C0, a 5-cycle, a K−4 , or

two adjacent 4-cycles. Suppose otherwise. We first claim that there is k-cycle of length at most 9 containing

v′i, vi, v, vj , v
′
j . Indeed, if a chord on C0 is created, then we may assume that v′i ∈ C0 and v′j is adjacent to

a vertex, say u, on C0. By Lemma
2p
2.3, there is k-cycle of length in {6, 7, 8, 9} containing v′i, vi, v, vj , v

′
j , u.

If G′ contains a 5-cycle, a K−4 , or two adjacent 4-cycles. So the resulting vertex v′ must be a vertex on a

5-cycles, K−4 , or adjacent 4-cycle in G′. It follows that there is a path, say P of length at most five between

v′i and v′j in G− {v, vi, vj}. Then P together with v, vi, vj , v
′
i, v
′
j forms a cycle of length at most 9 in G.
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Let the k-cycle with k ≥ 9 be C. Then C is a separating cycle. By Lemma
le1
2.1 (4) and Lemma

le00
2.2, C

must be a 8-cycle that is the outer face of B6 or is a 9-cycle that is the outer face of Bi with i ∈ [5]. Since

v is on C and v has degree at least four inside or outside C, C can only be the outer face of B2, in which v

is the 4-vertex that is adjacent to a triangle. But the conditions we have chosen forbid this possibility.

Therefore, G′ ∈ G.

From now on, let Fk = {f : f is a k-face and b(f) ∩C0 = ∅}, F ′k = {f : f is a k-face and |b(f) ∩C0| =
1}, and F ′′k = {f : f is a k-face and |b(f) ∩ C0| = 2}, F ′′′k = {f : f is a k-face and |b(f) ∩ C0| = 3}.

le1a Lemma 2.8 (1) If f = [uxvy] is a 4-face and |{u, v} ∩ C0| ≤ 1, then G[{u, v}] ∈ G .

(2) There is no 4-face from F ′4.

(3) There is no (4−, 3+, 4−, 3+)-face f with b(f) ∩ C0 = ∅.

Proof. (1) Since G has no 5-cycle, there is no 3-path joining u and v. It follows that no new triangle is

created in G[{u, v}] and hence G[{u, v}] has no K−4 . By Lemma
le00
2.2, there is no 4-path joining u and v.

Thus, no new 4-cycle is created in G[{u, v}] and hence G[{u, v}] has no adjacent 4-cycles. If G[{u,w}] has

a 5-cycle, then G has a 5-path P ′ joining u and v. If one of x and y is in P ′, then b(f) ∪ P ′ has a 5-cycle,

a contradiction. So, x, y 6∈ V (P ′), and hence either P ′ ∪ uxv or P ′ ∪ uyv is a separating 7-cycle; both

contradict Lemma
le1
2.1 (4). Therefore, G[{u, v}] ∈ G .

(2) Suppose otherwise that f = [uvwx] is a 4-face from F ′4 such that b(f) ∩ C0 = {u}. Let C0 =

[v1v2 . . . vk], where k ∈ {3, 7, 9}. We assume, without loss of generality, that u = v1. Since G has no

adjacent 4-cycles, w is not adjacent to v2 nor vk. By Lemma
3p
2.4, w is not adjacent to any vertex of v3, v4, v5

and v6. By (1), G[{u,w}] ∈ G . By the minimality of (G,C0), (G[{u, v}], C0) is superextendable. By the

definition of superextendability, the color of u is different from the colors of v and x. Thus, we color w with

the color of u and get a desired (2, 0, 0)-coloring of G, a contradiction.

(3) Suppose otherwise that f = [uvwx] is a (4−, 3+, 4−, 3+)-face of G. Let H = G[{v, x}]. As in the

proof of (1), H ∈ G . By the minimality of G, H is (2, 0, 0)-colorable. We now extend the (2, 0, 0)-coloring

of H to a (2, 0, 0)-coloring of G. We color v and x with the color of vvx, and keep the colors of the other

vertices of H. The (2, 0, 0)-coloring of H cannot be extended to a (2, 0, 0)-coloring of G if and only if each of

vvx, u (or w) and one neighbor of u (or w ) are colored with 1 in H. We assume, without loss of generality,

that each of vvx, u and one neighbor of u are colored 1. In this case, we can properly recolor u. So, we

obtain a desired a (2, 0, 0)-coloring of G, a contradiction.

le6 Lemma 2.9 Let |C0| = k, where k = 3, 7, 9.

(1) If f is a 3-face, then |b(f) ∩ C0| ≤ 2. If |C0| = 3, then |b(f) ∩ C0| ≤ 1.

(2) Let f be a 4-face. If b(f) ∩ C0 6= ∅, then |b(f) ∩ C0| = 2.

Proof. (1) Since C0 is an induced cycle, C0 has no chord. Thus, |b(f) ∩ C0| ≤ 2. If |C0| = 3, then

|b(f) ∩ C0| ≤ 1 since G has no adjacent 3-cycles.

(2) Assume that b(f) ∩ C0 6= ∅. Since C0 is an induced cycle, |b(f) ∩ C0| ≤ 3. By Lemma
le1a
2.8 (2),

|b(f) ∩ C0| ≥ 2. So we just need to show that |b(f) ∩ C0| 6= 3. Assume that |b(f) ∩ C0| = 3. Then f has

three consecutive vertices on C0, say v1, v2, v3. Now v1 and v3 have a common neighbor in int(C0), so by

Lemma
2p
2.3, v1v3 ∈ E(G), which implies that we have a K−4 , a contradiction.

We call a (3, 4, 4)-face or (3, 3, 5−)-face in F3 light. A 3-vertex is light if it is on a light 3-face.

le10 Lemma 2.10 (Lemma 3.10
LLY15a
[14]) Let f = [uvw] be a light 3-face with d(u) = 3 and let u′ 6∈ C0 be a pendent

neighbor of u. Then a (2, 0, 0)-coloring of (G−{u, u′}, C0) can be extended to the desired coloring of G−u′
such that u is colored with 1.

Let f = [uvw] be a (3, 3, k)-face such that b(f) ∩ C0 = ∅, where k ≥ 5. A face f is poor or semi-poor if

it has two or one pendent 4−-neighbors in int(C0) at u and v, respectively. It is called rich if it is not poor

or semi-poor. Sometimes, we also say that f is non-rich if it is poor or semi-poor.
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le15 Lemma 2.11 (Lemma 12
W14
[6]) Let f = [uvw] be a poor or semi-poor (3, 3, k)-face of G with d(w) = k, and

u′ the pendent 4−-neighbor of u. If G′ = G − w has a (2, 0, 0)-coloring φ that is a superextension from C0

to G′. Then G′ also has a (2, 0, 0)-coloring φα that is also a superextension of φ from C0 to G′, such that

φα(x) = φ(x) if x /∈ {u′, u, v} and α /∈ {φα(u), φα(v)}), where α ∈ {2, 3}.

Here we summarize some results obtained in
W14
[6] by applying Lemma

le15
2.11.

le24 Lemma 2.12 Let v be a k-vertex in int(C0) with k ≥ 5.

(1) (Lemma 15
W14
[6]) if k = 5, then v cannot be incident with 4 light pendent 3-faces.

(2) (Lemma 18
W14
[6]) If v is a 3-triangular 8-vertex and incident with three poor or semi-poor (3, 3, 8)-faces,

then v is not incident with light 3-vertices.

(3) (Lemma 17
W14
[6]) If a 9-vertex is incident with four (3, 3, 9)-faces, then at least one of them is rich.

(4) (Lemma 16
W14
[6]) If a 10-vertex is incident with five (3, 3, 10)-faces, then at least one of them is rich.

le13 Lemma 2.13 Let v be a 5-vertex with neighbors vi, 0 ≤ i ≤ 4, in a cyclic order. Then

(1) If v is incident with a (3, 4, 5)-face and adjacent to three pendent 3-faces, then it can be adjacent to at

most one pendent light 3-face.

(2) (Lemma 24(2),
W14
[6]) Let v be a 1-triangular 5-vertex. If v is incident with a (3, 5+, 5)-face, then it can

be incident with at most two light 3-faces.

(3) (Lemma 25,
W14
[6]) Let f1 = [v0v1v] and f2 = [v2v3v] be two 3-faces. If both f1 and f2 are (3, 4−, 5)-faces,

then v4 is a 4+-vertex.

Proof. (1) Suppose to the contrary that v is incident with a (3, 4, 5)-face f = [v0vv1] with d(v1) = 4 and

adjacent to two pendent light 3-faces. We first assume that [v2x1x2] is a pendent light 3-face. In this case,

[v3x3x4] or [v4x5x6] is a pendent 3-face. We prove the case that [v4x5x6] is a pendent light 3-face. The

proof is similar for the case that [v3x3x4] is a pendent light 3-face. Denote by G′ the graph obtained from G

by deleting v, v0, v2, v4 and identifying v1 and v3. By Lemma
le12
2.6, G′ ∈ G . By the minimality of G, (G′, C0)

is superextendable and G′ has a (2, 0, 0)-coloring. We now go back to color the vertices of G. We keep the

colors of all vertices of G′. By Lemma
le10
2.10, we assign 1 to both v2 with v4. We assume first that vv1v3 is

colored with 1. We color both v1 and v3 with 1, and properly color v0 and v. Thus, we get a (2, 0, 0)-coloring

of G, a contradiction. Thus, by symmetry, assume that vv1v3 is colored with 2. We properly color v0. If v0
is colored with 1, then properly color color v, a contradiction. Thus, assume that v0 is colored with 3. In

this case, let v′i and v′′i be the two neighbors of vi rather than vi for i = 2, 4. If both v′i and v′′i are both

colored with 1, then recolor vi properly for some i ∈ {2, 4}. Otherwise, keep the color of vi unchanged.

Thus, we can color v with 1, a contradiction.

Thus, assume that [v2x1x2] is not a light face. In this case, let G′ be the graph obtained from G by

deleting v, v0, v2, v3 and identifying v1 and v4. By Lemma
le12
2.6, G′ ∈ G . By the minimality of G, (G′, C0)

is superextendable and G′ has a (2, 0, 0)-coloring. We now go back to color the vertices of G. We keep the

colors of all vertices of G′.

We assume first that vv1v4 is colored with 1. We color both v1 and v4 with 1. By Lemma
le10
2.10, we

assign 1 to v3. We properly color v0 and v2. If both v0 and v2 are colored 2 or 3, then properly color v, a

contradiction. Thus, assume that v0 and v2 are colored 2 and 3, respectively. Let v′1 and v′′1 be the neighbors

of v rather than v and v0 and let v′4 and v′′4 be the two neighbors of v4 rather than v. If both v′1 and v′′1
are colored 1, then recolor v1 with 3, and then color v with 1, a contradiction. Thus, assume that at most

one of v′1 and v′′1 is colored with 1. In this case, we properly recolor v3 and v4. If at most one of v3 and v4
is colored with 1, then color v with 1, a contradiction. Thus, assume that both v3 and v4 are colored with

1. Let v′0 be the neighbor of v0 rather than v and v1. Note that v0 is properly colored 2. If v′0 is colored 1,

then recolor v0 with 3 and then color v with 1; if v′0 is colored with 3, then recolor v0 with 1, color v with

2. We get a contradiction in each case.

Next, we assume that vv1v4 is colored with 2 by symmetry. We recolor v3 properly. If each of v0, v2, v3
is colored with 1, then color v with 3, a contradiction. If at most two of v0, v2, v3 are colored with 1, then

color v with 1, a contradiction.
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le13a Lemma 2.14 (Lemma 30,
W14
[6]) Let v be a 5-vertex with neighbors vi, 0 ≤ i ≤ 4, in cyclic order. If

f1 = [v0v1v] is a (3, 5+, 5)-face, f2 = [v2v3v] is a (3, 4, 5)-face, and v4 is a light 3-neighbor of v, then the

pendent neighbor of the 3-vertex of f2 is a 3+-vertex on C0 or a 5+-vertex.

le16 Lemma 2.15 Let v be a 6-vertex with neighbors vi, 0 ≤ i ≤ 5. Then each of the following holds.

(1) If v is a 1-triangular 6-vertex incident with one non-rich (3,3,6)-face, then it is incident with at most

two pendent light 3-faces.

(2) v is incident with at most one non-rich (3, 3, 6)-face.

Proof. (1) Let f1 = [v0v1v] be a (3, 3, 6)-face. Suppose otherwise that v is incident to three pendent light

3-faces f2 = [v2v
′
2v
′′
2 ], f3 = [v3v

′
3v
′′
3 ] and f4 = [v4v

′
4v
′′
4 ]. By Lemma

le10
2.10, (G − {v, v2, v3, v4}, C0) has a

(2, 0, 0)-coloring which can be extended to a (2, 0, 0) of G− v such that each of v2, v3 and v4 is colored with

1. If v5 is colored with 1, then we may assume that v0 and v1 are colored with 1 and 2, respectively, by

Lemma
le15
2.11. Thus, we can color v with 3, a contradiction. Next, we may assume that v5 is colored with 2

by symmetry of 2 and 3. By Lemma
le15
2.11, G − v has a (2, 0, 0)-coloring such that each of v0 and v1 is not

colored with 3. Thus, we can color v with 3 and obtain a desired (2, 0, 0)-coloring of G, a contradiction.

(2) Suppose otherwise that v is incident with two non-rich (3, 3, 6)-faces f1 = [v0v1v] and f2 = [v2v3v].

Let G′ be the graph obtained from G by deleting vertex v. By Lemma
le12
2.6, G′ ∈ G . By the minimality of

G, the (2, 0, 0)-coloring of C0 can be superextended to G′. We claim that v4 and v5 are colored with 2 and

3, respectively. Suppose otherwise that by symmetry none of v4 and v5 is colored with 2. By Lemma
le15
2.11,

the coloring (2, 0, 0) of C0 can be superextended to G′ such that none of v0 and v1 is colored with 2 and

so neither of v2 and v3. In this case, v can be colored with 2, a contradiction. Thus, assume that v4 is

colored with 2 and v5 is colored with 3. Now, applying Lemma
le15
2.11 again, v0 and v1 colored with 1 and 3,

respectively, and v2 and v3 are also colored with 1 and 3, respectively. In this case, at most two neighbors

of v are colored with 1. Thus, we can color v with 1, a contradiction.

le17 Lemma 2.16 If v is a 2-triangular 6-vertex with neighbors vi, where 0 ≤ i ≤ 5, and f1 = [v0v1v] is a

(3, 3, 6)-face, then each of the following holds:

(1) (Lemma 28(1),
W14
[6]) If f2 is a (3, 4, 6)-face or (3, 3, 6)-face, then at least one of the isolated neighbor of

v is a 4+-vertex.

(2) (Lemma 28(2),
W14
[6]) If f2 is a (3, 5+, 6)-face, then at most one of the isolated neighbor of v is a light

3-vertex.

le180 Lemma 2.17 Let v be a 6-vertex with neighbors vi, where 0 ≤ i ≤ 5. If v is a 2-triangular or 3-triangular,

then v is incident with at most one non-rich (3, 3, 6)-face.

Proof. Suppose otherwise that v is incident with two non-rich (3, 3, 6)-faces f1 = [v0v1v] and f2 = [v2v3v].

Denote by G′ the graph obtained from G by deleting v, v0, v1, v2 and v3. By Lemma
le12
2.6, G′ ∈ G . By

minimality of G, G′ is (2, 0, 0)-colorable. Now we go back to color the vertices of G. We only prove the case

that v is a 2-triangular 6-vertex. The proof is similar for the case that v is a 3-triangular 6-vertex. If v4 and

v5 are both colored with 1 or 2, then v0 and v1 can be colored with 1 and 2, respectively, and so can v2 and

v3 by Lemma
le15
2.11. In this case, v can be colored with 3, a contradiction. If v4 and v5 are both colored with

3, then v0 and v1 can be colored with 1 and 3, respectively, and so can v2 and v3 by Lemma
le15
2.11. In this

case, v can be colored with 2, a contradiction. If v4 and v5 are colored with 1 and 2, respectively, then v0
and v1 can be colored with 1 and 2, respectively, and so can v2 and v3 by Lemma

le15
2.11. In this case, v can

be colored with 3, a contradiction. If v4 and v5 are colored with 1 and 3, respectively, then v0 and v1 can

be colored with 1 and 3, respectively, and so can v2 and v3 by Lemma
le15
2.11. In this case, v can be colored

with 2, a contradiction. If v4 and v5 are colored with 2 and 3, respectively, then v0 and v1 can be colored

with 1 and 2, respectively, and so can v2 and v3 by Lemma
le15
2.11. In this case, v can be nicely colored with

1, a contradiction.

le18 Lemma 2.18 Let v be a 3-triangular 6-vertex with neighbors vi, where 0 ≤ i ≤ 5. Let f1 = [v0v1v] be a

(3, 3, 6)-face, f2 = [v2v3v] and f3 = [v4v5v]. Then each of the following holds.
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(1) (Lemma 29(2),
W14
[6]) If f2 is a (3, 3, 6)-face, then f3 has no 3-vertex.

(2) (Lemma 29(1),
W14
[6]) At most one of f2 and f3 is a (3, 4−, 6)-face.

(3) (Lemma 29(3),
W14
[6]) If f2 is a (3, 4, 6)-face and f3 has a 3-vertex, then either f1 is rich or the outer

neighbor of the 3-vertex of f2 is either a 3+-vertex on C0 or a 5+-vertex.

le20 Lemma 2.19 Let v be a 7-vertex with neighbors vi, 0 ≤ i ≤ 6. Then

(1) If v is 2-triangular and incident with two non-rich (3, 3, 7)-faces, then at most one of the three isolated

3-vertices is a light 3-vertex.

(2) If v is 3-triangular, then v is incident with at most one non-rich (3, 3, 7)-face.

Proof. (1) Let f1 = [v0vv1] and f2 = [v2vv3] be two non-rich (3, 3, 7)-faces. Suppose to the contrary that

v4 and v5 are two light 3-vertices. Denote by G′ the graph obtained from G by deleting v. By Lemma
le12
2.6,

G′ ∈ G. By the minimality of G, G′ has a (2, 0, 0)-coloring. Now we extend the (2, 0, 0)-coloring of G′ to

a (2, 0, 0)-coloring of G. Assume first that v6 is colored with 1 or 2. By Lemma
le15
2.11, we can recolor v0, v1

with 1 or 2, respectively, and so can v2 and v3, respectively. By Lemma
le10
2.10, we can recolor both v4 and v5

with 1. Thus, we can color v with 3, a contradiction. Thus, assume that v6 are colored with 3. In this case,

by Lemma
le15
2.11, we can recolor v0, v1 with 1 and 3, respectively, and recolor v2, v3 with 1 and 3, respectively.

By Lemma
le10
2.10, we can recolor both v4 and v5 with 1. Thus, color v with 2, a contradiction.

(2) Let f1 = [v0vv1], f2 = [v2vv3] and f3 = [v4vv5]. Suppose otherwise that two of f1, f2 and f3 are

non-rich (3, 3, 7)-faces. We only prove the case that f1 and f2 are two non-rich (3, 3, 7)-faces. The proof

is similar for the cases that f1 and f3 are two non-rich (3, 3, 7)-faces and that f2 and f3 are two non-rich

(3, 3, 7)-faces. Denote by G′ the graph obtained from G by deleting v and then identifying v4 and v6. By

Lemma
le12
2.6, G′ ∈ G. By the minimality of G, G′ has a (2, 0, 0)-coloring. We now go back to color the

vertices of G. We color each of v4 and v6 with the color of vv4v6 .

We first assume that vv4v6 is colored with 1. If v5 is colored with 1 or 2, then we can color v0 and v1
with 1 and 2, respectively, and recolor v2 and v3 with 1 and 2, respectively, by Lemma

le15
2.11. In this case,

we color v with 3, a contradiction. If v5 is colored with 3, then by Lemma
le15
2.11, we can color v0 and v1

with 1 and 3, respectively, and recolor v2 and v3 with 1 and 3, respectively. In this case, we color v with

2, a contradiction. Thus, we assume that vv4v6 is colored with 2 by symmetry of 2 and 3. In this case, v5
cannot be colored with 2. If v5 is colored with 3, then by by Lemma

le15
2.11, we can color v0 and v1 with 1

and 3, respectively, and recolor v2 and v3 with 1 and 3, respectively. In this case, we can nicely color v with

1, a contradiction. Thus, assume that v5 is colored with 1. By Lemma
le15
2.11, we can color v0 and v1 with

1 and 2, respectively, and recolor v2 and v3 with 1 and 2, respectively. In this case, we color v with 3, a

contradiction.

le22 Lemma 2.20 (Lemma 26 (1),
W14
[6]) Let v be a 4-triangular 8-vertex with neighbors vi, 0 ≤ i ≤ 7. If all

incident 3-faces of v are (3, 3, 8)-faces, then v is incident with at most two non-rich (3, 3, 8)-faces.

3 Discharging procedure

In this section, we will finish the proof of Theorem
th1
1.6 by a discharging argument. Let the initial charge

of vertex u ∈ G be µ(u) = 2d(u) − 6, and the initial charge of face f 6= C0 be µ(f) = d(f) − 6, and

µ(C0) = d(C0) + 6. Then ∑
u∈V (G)

µ(u) +
∑

f∈F (G)

µ(f) = 0.

We first give some more definitions here. A 5-vertex v is bad if it is incident with a (3, 4, 5)-face and a

(3, 5, 5+)-face, and the isolated neighbor of v is a light 3-vertex. A 6-vertex v is bad if it is incident with a

(3, 3, 6)-face, a (3, 4, 6)-face and a (3, 5+, 6)-face. The discharging rules are as follows.

(R1) Let u be a vertex not on C0.

(R1.1) Every 4-vertex u gives 1 to each incident 3-face.
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(R1.2) Every 5-vertex u gives 3
2 to the incident (3, 5, 5+)-face and 1 to the incident (3, 3, 5)-face and

(4+, 4+, 5)-face. Moreover, u gives 1 to each light pendent 3-faces and 1
2 to each other pendent

3-faces. The vertex u gives 3
2 to the incident (3, 4, 5)-face if it is bad and 2 to the incident

(3, 4, 5)-face otherwise.

(R1.3) Every k-vertex u with k ≥ 6 gives 2, 5
2 , and 3 to the incident (3, 3, k)-face if it is rich, semi-

rich and poor, respectively. The vertex u gives 3
2 to the incident (3, 5+, k)-face, and 1 to other

incident 3-face. Moreover, u gives 1 to each light pendent 3-face and 1
2 to each other pendent

3-face. Every 7+-vertex gives 2 to the incident (3, 4, k)-face. Let u be a 6-vertex. If u is bad,

u gives 3
2 to the incident (3, 4, 6)-face if u is not incident with a rich (3, 3, 6)-face and 2 to the

incident (3, 4, 6)-face otherwise. If u is not bad, it sends 2 to the incident (3, 4, 6)-face.

(R1.4) Every 5+-vertex u gives 1 to each incident (4−, 4−, 5+, 5+)-face, and gives 2
3 to each incident

(4−, 5+, 5+, 5+)-face, and gives 1
2 to each incident (5+, 5+, 5+, 5+)-face.

R2 (R2) C0 gives 3 to each face in F ′3 ∪ F ′′3 , 2 to each face in F ′′4 , and 1 to each pendent 3-face.

R3 (R3) Every 6+-face f (f 6= C0) sends d(f)− 6 to C0 and every vertex u ∈ C0 gives 2d(u)− 6 to C0.

We shall show that each x ∈ V (G) ∪ F (G) \ {C0} has final charge µ∗(x) ≥ 0, and µ∗(C0) > 0.

First we consider faces. By (R3), for each 6+-face f (f 6= C0), µ∗(f) = 0. Since G contains no 5-faces,

we first consider 3-faces and 4-faces other than C0. Let f be a 3- or 4-face. By Lemma
le6
2.9, |b(f)∩C0| ≤ 2.

If |b(f) ∩ C0| ≥ 1, then by (R2), µ∗(f) = 0. Thus, we may assume that b(f) ∩ C0 = ∅.
If f is a 4-face in F4, then by Lemma

le1a
2.8 (3), f contains at least two 5+-vertices, then f gains 2 from

the 5+-vertices by (R1.4), so µ∗(f) = 0.

Let f be a 3-face in F3. Let f = [uvw] with degree sequence (d1, d2, d3).

(1) f is a (3, 3, 5−)-face. If f is a (3, 3, 5)-face or (3, 3, 4)-face, then by Lemma
le1
2.1(5) (6), each of the

pendent neighbor of f is either a 5+-vertex or on C0. Then f gets 1 from each of the pendent neighbor

of f by (R1.2.1) and (R1.3.1), and at least 1 from the incident 4+-vertex by (R1.1), and gets 1 from C0

by (R2). Thus, µ∗(f) ≥ 3− 6 + 1× 3 = 0. If f is a (3, 3, 3)-face, then by Lemma
le1
2.1(5) and (6), each of

the pendent neighbor of f is either a 5+-vertex or on C0. In this case, f gets 1 either from each of the

pendent neighbor of f by (R1.2.1) and (R1.3.1) or from C0 by (R2). Thus, µ∗(f) ≥ 3− 6 + 1× 3 = 0.

(2) f is a (3, 3, 6+)-face. By (R1.3.1), f receives 2 or 5
2 or 3 from w if it is rich or semi-rich or poor. If

a pendent neighbor of a 3-vertex is on C0, then C0 gives 1 to f by (R2). This implies that µ∗(f) ≥
3 − 6 + 1 + 2 = 0. Thus, we assume that no pendent neighbor of 3-vertex is on C0. If f is poor, then

w sends 3 to f . Thus, µ∗(f) ≥ 3 − 6 + 3 = 0. If f is semi-rich, then there exists exactly one pendent

neighbor of a 3-vertex is a 5+-vertex, which sends 1
2 to f by (R1.2.1) and (R1.3.1), also w sends 5

2 to f

by (R1.3.1). Thus, µ∗(f) ≥ 3− 6 + 5
2 + 1

2 = 0. Now we assume that f is rich, each pendent neighbor of

the two 3-vertices is a 5+-vertex. By (R1.2.1) and (R1.3.1), each of them gives 1
2 to f , also w sends 2

to f by (R1.3.1). Thus, µ∗(f) ≥ 3− 6 + 2 + 2× 1
2 = 0.

(3) f is a (3, 4, 4)-face. By Lemma
le1
2.1(5)(6), the pendent neighbor u′ of 3-vertex u is either on C0 or is a

5+-vertex. In the former case, u′ gives 1 to f by (R2). By (R1.1), each of v and w sends at least 1 to f .

Thus, µ∗(f) ≥ 3− 6 + 1× 3 = 0. In latter case, f is a light pendent 3-face. By (R1.2.2) and (R1.3.1),

u′ sends 1 to f . By (R1.1), f gets 1 from v and w respectively. Thus, µ∗(f) ≥ 3− 6 + 1× 3 = 0.

(4) f is a (3, 4, 5)-face. If w is not a bad vertex, then by (R1.1), (R1.2.1), v sends 1 to f and w sends 2 to

f . Thus, µ∗(f) ≥ 3−6 + 1 + 2 = 0. Thus, assume that w is bad. By Lemma
le13a
2.14, the pendent neighbor

of u is a 3+-vertex on C0 or a 5+-vertex z. In the former case, by (R1.1), (R1.2.1) and (R2), f gets 1

from v, gets 3
2 from w and gets 1 from the 3+-vertex on C0. Thus, µ∗(f) ≥ 3− 6 + 1 + 3

2 + 1 > 0. In the

latter case, by (R1.1), (R1.2.1), f gets 1 from v, gets 3
2 from w and gets 1

2 from the 5+-vertex which is

the pendent neighbor of u. Thus, µ∗(f) ≥ 3− 6 + 1 + 3
2 + 1

2 = 0.

10



(5) f is a (3, 4, 6)-face. If w is not a bad vertex, then by (R1.1) and (R1.3.1), v sends 1 to f and w sends

2 to f . Thus, µ∗(f) ≥ 3 − 6 + 1 + 2 = 0. Thus, assume that w is bad. By Lemma
le18
2.18, either w is

incident with a rich (3, 3, 6)-face or the pendent neighbor of u is a 3+-vertex on C0 or a 5+-vertex. If w

is incident with a rich (3, 3, 6)-face, then w gives 2 to f by (R1.3.1) and v sends 1 to f by (R1.1). Thus,

µ∗(f) ≥ 3−6+1+2 = 0. If the pendent neighbor of u is a 3+-vertex on C0, by (R1.1), (R1.3.1) and (R2),

f gets 1 from v, gets 3
2 from w and gets 1 from the 3+-vertex on C0. Thus, µ∗(f) ≥ 3−6+1+ 3

2 +1 > 0.

If the pendent neighbor of u is a 5+-vertex, then f gets 1 from v, gets 3
2 from w and gets 1

2 from the

5+-vertex which is the pendent neighbor of u by (R1.1), (R1.3.1). Thus, µ∗(f) ≥ 3− 6 + 1 + 3
2 + 1

2 = 0.

(6) f is a (3, 4, 7+)-face. By (R1.1), (R1.3.1), v sends 1 to f and w sends 2 to f . Thus, µ∗(f) ≥ −3+1+2 = 0.

(7) f is a (3, 5+, 5+)-face. By (R1.2.1) and (R1.3.1), each of v and w sends 3
2 to f . Thus, µ∗(f) ≥

−3 + 2× 3
2 = 0.

(8) f is a (4+, 4+, 4+)-face. By (R1.1), (R1.2.1) and (R1.3.1), f gets at least 1 from each of u, v and w.

Thus, µ∗(f) ≥ −3 + 1× 3 = 0.

Now we consider vertices. By (R3), for each vertex u ∈ C0, µ∗(u) = 2d(u) − 6 − (2d(u) − 6) = 0. So

we only need to consider vertices in int(C0). By Lemma
le1
2.1, int(C0) contains no 2−-vertices. For u 6∈ C0,

let p, q, t be the number of incident 4-faces pendent 3-faces, and incident 3-faces of u, respectively. Let t′

be the number of rich (3, 3, d(u))-faces and (3, 4+, d(u))-faces and let q′ be the number of non-light pendent

3-faces and neighbors not on 3-faces. Since G contains no, 5-cycle, K−4 , or adjacent 4-faces, we have

2p+ q + 2t ≤ d(u). (1)

If d(u) = 3, by the discharging rules µ∗(u) = µ(u) = 0. Thus, we consider d(u) ≥ 4.

Lemma 3.1 Every 7+-vertex in int(C0) has nonnegative final charge.

Proof. Let u ∈ int(C0) with d(u) = k ≥ 7. By (R1.3), we have

µ∗(u) ≥ 2d(u)− 6− (p+ q + 3t− t′ − 1

2
q′) = 2d(u)− 6− (2p+ q + 2t)− t+ t′ + p+

1

2
q′

≥ d(u)− 6− t+ t′ + p+
1

2
q′ ≥ d(u)− 6−

⌊d(u)

2

⌋
+ t′ + p+

1

2
q′ =

⌈d(u)

2

⌉
− 6 + t′ + p+

1

2
q′.

So µ∗(u) ≥ 0 if d(u) ≥ 11. If d(u) ∈ {9, 10}, then by Lemma
le24
2.12 (3) and (4), u is incident with a rich

(3, 3, k)-face or a (3+, 4+, k)-face, that is, t′ ≥ 1. So µ∗(u) ≥ 5 − 6 + 1 = 0. Now let d(u) = 8. Then

by Lemma
le22
2.20 and Lemma

le24
2.12 (2), t ≤ 2, or t = 4 and t′ ≥ 2, or t = 3 and q′ = 2. In either case,

µ∗(u) ≥ 8 − 6 − t + t′ + 1
2q
′ ≥ 0. Let d(u) = 7. By Lemma

le20
2.19, t = 3 and t′ ≥ 2, or t = 2 and q′ ≥ 2, or

t ≤ 1. In either case, µ∗(u) ≥ 7− 6− t+ t′ + 1
2q
′ ≥ 0.

Lemma 3.2 Each 4-vertex has nonnegative final charge.

Proof. Let u be a 4-vertex. Since G has no 5-cycle, u is incident with at most two 3-faces. If u is incident

with two 3-faces, then by (R1.1), u gives 1 to each incident 3-face and µ∗(u) = 2−1×2 = 0. If u is incident

with only one 3-face, then u is incident with at most one 4-face since G has no 5-cycle. Thus, by (R1.1), u

gives 1 to the incident 3-face. This implies that µ∗(u) ≥ 2− 1 = 1 > 0. If u is not incident with any 3-face,

then by (R1.1), µ∗(u) ≥ 2 > 0.

Lemma 3.3 Each 5-vertex has nonnegative final charge.

Proof. Let u be a 5-vertex. Let u be not a bad vertex. Assume first that u is not incident with any

3-faces. Since G has no adjacent two 4-faces, u is incident with at most two 4-faces. If u is incident with

two 4-faces, then u is incident with at most two (4−, 4−, 5, 5+)-faces. In this case, u is adjacent to at most

one pendent 3-faces. Thus, µ∗(u) ≥ 4 − 2 − 1 ≥ 0 by (R1.2.1). If u is incident with one 4-faces, then u
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is adjacent to at most three pendent light 3-faces. Thus, µ∗(u) ≥ 4 − 1 − 3 = 0 by (R1.2.1). If u is not

incident with any 4-face, u can be incident with at most three light pendent 3-faces by Lemma
le24
2.12(1).

By (R1.2.1), u gives 1 to each of these three light pendent and 1
2 to the other two pendent 3-faces. Thus,

µ∗(u) ≥ 4− 1× 3− 2× 1
2 = 0.

Thus, we assume that u is incident with at least one 3-face f1. Consider that u is 1-triangular. Since

G has no adjacent two 4-faces, u is at most one 4-face. In this case, u is either incident with a 4-face

and at most one pendent 3-face or at most three pendent 3-faces. In the former case, u gives at most 2

to the incident 3-face, gives 1 to the incident 4-face and at most 1 to the pendent 3-face by (R1.2.1) and

(R1.2.2). Thus, µ∗(u) ≥ 4 − 2 − 1 − 1 = 0. In the latter case, If f1 is a (3, 3, 5)-face, then u gives 1 to

f1, at most 1 to each pendent 3-face by (R1.2.1) and (R1.2.2). Thus, µ∗(u) ≥ 4 − 1 × 4 = 0. If f1 is a

(3, 4, 5)-face, then u is adjacent to one pendent light 3-face by Lemma
le13
2.13(1). By (R1.2.1), u gives at most

2 to the incident 3-face, at most 1 to the light pendent 3-face and 1
2 to each other pendent 3-face. Thus,

µ∗(u) ≥ 4 − 2 − 1 − 1
2 × 2 = 0. If f1 is a (3, 5, 5+)-face, then u is adjacent to at most two light 3-vertex

by Lemma
le13
2.13(3). By R(1.2.1), u gives 3

2 to the incident (3, 5, 5+)-face, 1 to each light pendent 3-face and
1
2 to other the pendent 3-face. Thus, µ∗(u) ≥ 4 − 3

2 − 2 × 1 − 1
2 = 0. If f1 is a (4+, 4+, 5)-face, then u is

adjacent to at most three pendent 3-faces. In this case, u gives 1 to the incident (4+, 4+, 5)-face and gives

at most 1 to each pendent 3-face. Thus, by (R1.2.1), µ∗(u) ≥ 4− 1− 1× 3 = 0.

Now, we assume that u is 2-triangular, let f1 and f2 be the two 3-faces incident with u. If both

of f1 and f2 are (3, 4−, 5)-faces, then the isolated neighbor is a 4+-neighbor by Lemma
le13
2.13(3), hence

µ∗(u) ≥ 4 − 2 × 2 = 0 by (R1.2.1). If none of f1 and f2 is a (3, 4−, 5)-face, then u is adjacent to a

pendent 3-face. Thus, µ∗(u) ≥ 4 − 2 × 3
2 − 1 = 0 by (R1.2.1). Thus, assume that f1 is a (3, 4−, 5)-face

and f2 is a (3, 5, 5+)-face. If f1 is a (3, 3, 5)-face, then by (R1.2), u gives 1 to f1 and gives 3
2 to f2. Thus,

µ∗(u) ≥ 4 − 1 − 3
2 − 1 = 1

2 . Assume that f1 is a (3, 4, 5)-face. If u is not a bad 5-vertex, then the isolated

neighbor is not a light 3-neighbor. In this case, µ∗(u) ≥ 4− 2− 3
2 −

1
2 = 0 by (R1.2.1). If u be a bad vertex,

then the isolated neighbor is a light 3-neighbor. By (R1.2.1), u gives 3
2 to (3, 5, 5+)-face, 3

2 to (3, 4, 5)-face

and 1 to the light pendent 3-face. Thus, µ∗(u) ≥ 4− 2× 3
2 − 1 = 0.

Lemma 3.4 Each 6-vertex has nonnegative final charge.

Proof. Let u be a 6-vertex with neighbor vi, where 0 ≤ i ≤ 5. Assume first that u is not a bad vertex. If u

is not incident with any 3-faces, then p+ q ≤ 6. By (R1.3), u gives at most 1 to each of the pendent 3-faces

or incident 4-faces. Thus, µ∗(u) ≥ 6 − 1 × 6 = 0. If u is 1-triangular with f1 = [v0v1u], then p + q ≤ 4.

If f1 is a rich (3, 3, 6)-face or a (3, 4+, 6)-face, then u gives at most 2 to the incident 3-face. By (R1.3.1),

µ∗(u) ≥ 6 − 2 − 1 × 4 = 0. If f1 is a non-rich (3, 3, 6)-face, then by Lemma
le24
2.12(2) at most two of the

isolated neighbors of u are light 3-vertices. Thus, µ∗(u) ≥ 6− 3− 1× 2− 1
2 × 2 = 0 by (R1.3.1).

If u is 2-triangular, then p = 1 or q ≤ 2. Let f1 = [v0v1u] and f2 = [v2v3u] be the two 3-faces incident

with u. In the case that p = 1, let f3 is a 4-face incident with u. By Lemma
le16
2.15(2), at most one of f1 and

f2 is a non-rich (3, 3, 6)-face. By (R1.3.1) and (R1.3.2), u gives at most 1 to each incident 4-face, at most 3

to the incident non-rich 3-face (3, 3, 6)-face and at most 2 the other 3-face. Thus, µ∗(u) ≥ 6− 3− 2− 1 = 0.

Thus, assume that q ≤ 2. By Lemma
le16
2.15(2), at most one of f1 and f2 is non-rich. Assume first that

both f1 and f2 are rich. In this case, u gives 2 to each of the incident rich (3, 3, 6)-face and at most 1 to

each of the pendent 3-face by R(1.3.1). Thus, µ∗(u) ≥ 6 − 2 × 2 − 2 × 1 = 0. Thus, assume that f1 is

non-rich (3, 3, 6)-face and f2 is rich. If f2 is a (3, 3, 6)-face or (3, 4, 6)-face, then at least one of v4 and v5 is

a 4+-vertex by Lemma
le17
2.16(1). This means that u is adjacent to at most a pendent 3-face. In this case, u

gives at most 3 to f1, 2 to f2 and at most 1 to the pendent 3-face. Thus, µ∗(u) ≥ 6− 2− 3− 1 = 0. If f2 is

a (3, 5+, 6)-face, then at most one of v4 and v5 is a light 3-vertex by Lemma
le17
2.16(2). By (R1.3.1), u gives

3 to f1 and 3
2 to f2 and 1 to the light pendent 3-face and gives 1

2 to each non-light pendent 3-face. Thus,

µ∗(u) ≥ 6− 3− 3
2 − 1− 1

2 = 0. If f2 is a (4+, 4+, 6)-face, then u gives 3 to f1 and 1 to f2 and at most 1 to

each pendent 3-face (if they exist). Thus, µ∗(u) ≥ 6− 3− 1− 2× 2 = 0.

If v is a 3-triangular 6-vertex, let f1, f2 and f3 be three incident 3-faces incident with u. By Lemma
le180
2.17,

u is incident with at most one non-rich 3-face. Assume first assume that none of f1, f2 and f3 is a non-rich

3-face. By (R1.3.1), u gives at most 2 to each of f1, f2 and f3. Thus, µ∗(u) ≥ 6− 2× 3 = 0. Thus, assume
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that f1 is a non-rich (3, 3, 6)-face. If f2 is a (3, 3, 6)-face, then f2 is rich. By Lemma
le18
2.18(1), f3 has no

3-vertex. Thus, u gives 3 to f1, 2 to f2 and 1 to f3 by (R1.3.1). So, µ∗(u) ≥ 6 − 3 − 2 − 1 = 0. If f2 is

a (3, 4, 6)-face, then by Lemma
le18
2.18 (2), f3 is not a (3, 4, 6)-face. Since u is not a bad vertex, f3 has no

3-vertex. By (R1.3.1), u gives 3 to f1, gives 2 to f2, and gives 1 to f3. Thus, µ∗(u) ≥ 6−3−2−1 = 0. If f2 is

a (3, 5+, 6)-face, then we may assume that f3 is a (3, 5+, 6)-face or a (4+, 4+, 6)-face by argument above. In

this case, u gives 3 to f1, and gives at most 3
2 to each of f2 and f3 by (R1.3.1). Thus, µ∗(u) ≥ 6−3−2× 3

2 = 0.

Finally, we assume that both f2 and f3 are (4+, 4+, 6)-faces. By (R1.3.1), u gives 3 to f1 and 1 to each of

f2 and f3. Thus, µ∗(u) ≥ 6− 3− 1× 2 > 0.

Let u be a bad vertex. Then u is incident with a (3, 3, 6)-face, a (3, 4, 6)-face and a (3, 5+, 6)-face. By

(R1.3.1), u gives 3
2 to the (3, 5, 6)-face, 3

2 to the (3, 4, 6)-face and 3 to the (3, 3, 6)-face. Thus, µ∗(u) ≥
6− 2× 3

2 − 3 = 0.

Now we consider the final charge of C0. Assume that fp is the number of 3-vertices adjacent to the

vertices of C0. Let x be the charge that C0 gets from other 6+-face by (R4). By (R2), (R3) and (R4),

µ∗(C0) ≥ d(C0) + 6 +
∑

u∈V (C0)

(2d(u)− 6)− 3(|F ′3|+ |F ′′3 |)− 2|F ′′4 | − fp + x

= d(C0) + 6 + 2
∑

u∈V (C0)

(d(u)− 2)− 2|C0| − 3(|F ′3|+ |F ′′3 |)− 2|F ′′4 | − fp + x

= 6− |C0|+ 2e(C0, V (G)− V (C0))− 3(|F ′3|+ |F ′′3 |)− 2|F ′′4 | − fp + x

= 6− |C0|+ |F ′3|+ |F ′′3 |+ 2|F ′′4 |+ fp + x+ 2e′. (2) eq1

where e(C0, V (G) − C0) is the number of edges between C0 and V (G) − C0 and e′ is the number of edges

in (C0, V (G)− C0) which are neither on any 3-face nor adjacent to an internal 3-vertex. The last equality

above holds since each face from F ′3 ∪ F ′′3 ∪ F ′′4 counts two times in e(C0, V (G)− C0) and each 3-neighbor

of C0 counts once in e(C0, V (G)− C0).

In order to show that µ∗(C0) > 0, it is sufficient for us to prove that 6 − |C0| + |F ′3| + |F ′′3 | + 2|F ′′4 | +
fp + x+ 2e′ > 0. If |C0| = 3, then it holds. Thus, we need to prove that if |C0| ∈ {7, 9}, then the inequality

holds. Suppose otherwise that for |C0| ∈ {7, 9},

6− |C0|+ |F ′3|+ |F ′′3 |+ 2|F ′′4 |+ fp + x+ 2e′ ≤ 0. (3) eq2

Assume first that |C0| = 7. From (
eq2
3), we obtain that |F ′3|+ |F ′′3 |+ 2|F ′′4 |+ fp +x+ 2e′ ≤ 1. This implies

that |F ′′4 | = e′ = 0 and at most one of |F ′3|, |F ′′3 | and fp is 1. If one of |F ′3|, |F ′′3 | and fp is 1, then C0 contains

at least five 2-vertices, thus x ≥ 1, contrary to (
eq2
3). Thus, |F ′3| = |F ′′3 | = fp = 0 and C0 is a cycle with seven

2-vertices, a contradiction.

Finally, we assume that |C0| = 9. From now on, we assume that C0 = v1v2 . . . v9.

Claim 1. |F ′′4 | = 0 and e′ = 0.

Proof of Claim 1. Suppose first that |F ′′4 | 6= 0. By (
eq2
3), |F ′′4 | = 1 and |F ′3| + |F ′′3 | + fp + e′ + x ≤ 1. Thus,

C0 has at least seven 2-vertices and hence G has a 7+-face rather than C0, which implies that x ≥ 1. But

then |F ′3| = |F ′′3 | = fp = e′ = 0, which implies that C0 has nine 2-vertices, and thus x ≥ 2, a contradiction.

Suppose now that e′ 6= 0. By (
eq2
3), |e′| = 1, |F ′′4 | = 0 and |F ′3|+ |F ′′3 |+ fp + e′ + x ≤ 1. It follows that C0

contains at least six 2-vertices. By the definition of e′, the edge that is counted in e′ is not incident to any

triangle, so it must be in 8+-face, which implies x ≥ 2, a contradiction. Thus we have Claim 1.

Let U = {v ∈ V (C0) : d(v) ≥ 3} = {vi1 , vi2 , . . . , vit} with i1 < i2 < . . . < it so that the vertices in U

appear on C0 in clockwise order. Let Mj be the path from vij to vij+1
and Mt be the path from vit to vi1

following the clockwise order. Let mi be the number of interior vertices on Mi. Without loss of generality,

we assume that m1 = max1≤i≤tmi. Note that t = 2|F ′′3 |+ |F ′3|+ fp and
∑t
i=1mi = 9− t.

For simplicity, we assume that vi1 = v1. Let fi denote the internal face whose boundary contains Mi.

Note that C0 has no chord. By Lemmas
2p
2.3 and

3p
2.4, the fi must contain a path of length at least 4 whose

vertices are all in int(C0) between vij and vij+1
. Thus we obtain the following claim.

Claim 2. If mj ≥ 1 for some j ∈ {1, . . . , t}, then fj is a (mj + 5)+-face.
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Let t′ = |{mj : mj > 0}|. By (
eq2
3) and Claim 1, |F ′3| + |F ′′3 | + fp + x ≤ 3 and thus t′ ≤ 3. If

|F ′3|+ |F ′′3 |+ fp = 3, then
∑t
i=1mi ≥ 3. If

∑t
i=1mi ≥ 4, then m1 ≥ 2. By Claim 2, G has a 7+-face, hence

x ≥ 1, contrary to (
eq2
3). Thus,

∑t
i=1mi = 3 and |F ′′3 | = 3 and |F ′3| = fp = x = 0. Thus, we may assume that

[v1v2x1], [v4v5x2] and [v7v8x3] are three 3-faces from F ′′3 and there is a 3-vertex y adjacent to each of x1, x2
and x3, contrary to Lemma

le1
2.1(1). If |F ′3|+ |F ′′3 |+ fp = 2,

∑t
i=1mi ≥ 5. Note that t′ ≤ 2. Thus, m1 ≥ 3.

By Claim 2, G has a 8+-face. By (R4), x ≥ 2, contrary to (
eq2
3). If |F ′3| + |F ′′3 | + fp = 1,

∑t
i=1mi ≥ 7.

Note that t′ = 1. Thus, m1 ≥ 7. By Claim 2, G has a 9+-face. By (R3), x ≥ 3, contrary to (
eq2
3). Thus,

|F ′3|+ |F ′′3 |+ fp = 0. In this case, G is a 9-cycle, a contradiction.
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