Math 432 Homework Ten

Due: Friday, April 8, 2016

Prove the following statements. Four points for each.

- (1) Show that $\chi(G) = \max{\chi(B) : B \text{ a block of } G}$.
- (2) (6 points) A graph is k-degenerate if it can be reduced to K₁ by repeatedly deleting vertices of degree at most k.
 (a) Show that a graph is k-degenerate if and only if every subgraph has a vertex of degree at most k.
 (b) Characterize the 1-degenerate graphs.
 - (c) Show that every k-degenerate graph is (k + 1)-colorable.
- (3) Let \overline{G} be the complement graph of graph G, that is, an edge in \overline{G} if and only if it is not in G. Show that $\chi(G) + \chi(\overline{G}) \leq n(G) + 1$.
- (4) Let G be a graph whose odd cycles are pairwise intersecting, meaning that every two odd cycles in G have a common vertex. Prove that $\chi(G) \leq 5$. Construct a graph to show that the bound cannon be improved.
- (5) Prove that if G has no induced $2K_2$, then $\chi(G) \leq {\binom{\omega(G)+1}{2}}$.
- (6) For all $k \in \mathbf{N}$, prove that a graph G is 2^k -colorable if and only if G can be decomposed to k edge-disjoint bipartite graphs.