Math 432 Homework Eleven

Due: Friday, April 15, 2016

Prove the following statements. Four points for each.
(1) Prove that every regular graph having a cut-vertex is Class 2 (i.e., the chromatic index is $\Delta+1$).
(2) Let G be a simple graph.
(a) Prove that the number of edges in $L(G)$ is $\sum_{v \in V(G)}\binom{d(v)}{2}$.
(b) Prove that G is isomorphic to $L(G)$ if and only if G is 2-regular.
(3) Let G be a bipartite graph with maximum degree k. Let f be a proper k-edgecoloring of a subgraph H of G. Let $u v$ be an edge not in H. By using a path alternating in two colors, show that f can be altered and then extended to a proper k-edge-coloring of $H+u v$. Conclude that $\chi^{\prime}(G)=\Delta(G)$.
(4) Prove that every 2-connected simple graph G has a cycle of length at least $\min \{n(G), 2 \delta(G)\}$. Use this to prove that every $2 k$-regular graph with $4 k+1$ vertices is Hamiltonian.
(5) Let $R(p, q)$ be the Ramsey number. Prove that $R(p, q) \leq R(p-1, q)+R(p, q-1)$.
(6) Find $R\left(K_{3}, 2 K_{2}\right)$.

