Math 432 - Combinatorics
 Homework 2
 Due Feb 5, 2016.

Solve the following problems. Show all your work. Each problem is 4 points.

1. Let p be a prime number. Prove that $p\binom{p}{k}$ for integer k with $1 \leq k \leq p-1$. Use this to prove that $(1+x)^{p} \equiv 1+x^{p} \bmod p$.
2. Count the positive integer solutions to $\sum_{i=1}^{n} x_{i} \leq k$.
3. Count 4 -words formed from the letters of COMBINATORICS.
4. Let $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right)$. Show that $A^{n+1}=\left(\begin{array}{cc}F_{n-1} & F_{n} \\ F_{n} & F_{n+1}\end{array}\right)$ for $n \geq 1$, where F_{n} is the n-th Fibonacci number.
5. Let D_{n} be the number of permutations of $[n]$ whose square is the identity permutation. Prove that $D_{n}=D_{n-1}+(n-1) D_{n-2}$ for $n \geq 3$ and $D_{1}=1, D_{2}=2$.
6. Problems on Catalan number. Let C_{n} be the n-th Catalan number.
(a) A ballot path of length $2 n$ is lattice path from $(0,0)$ to (n, n) that never rises above $y=x$. Show that there are C_{n} ballot paths of length $2 n$.
(b) A ballot list of length $2 n$ is a list of $n 1$ s and $n 0$ s such that every initial segment has at least as many 1s as 0s. Show that there are C_{n} ballot lists of length $2 n$.
