Math 432 – Combinatorics Homework 2 Due Feb 5, 2016.

Solve the following problems. Show all your work. Each problem is 4 points.

- 1. Let p be a prime number. Prove that $p|\binom{p}{k}$ for integer k with $1 \le k \le p-1$. Use this to prove that $(1+x)^p \equiv 1+x^p \mod p$.
- 2. Count the positive integer solutions to $\sum_{i=1}^{n} x_i \leq k$.
- 3. Count 4-words formed from the letters of COMBINATORICS.
- 4. Let $A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$. Show that $A^{n+1} = \begin{pmatrix} F_{n-1} & F_n \\ F_n & F_{n+1} \end{pmatrix}$ for $n \ge 1$, where F_n is the *n*-th Fibonacci number.
- 5. Let D_n be the number of permutations of [n] whose square is the identity permutation. Prove that $D_n = D_{n-1} + (n-1)D_{n-2}$ for $n \ge 3$ and $D_1 = 1, D_2 = 2$.
- 6. Problems on Catalan number. Let C_n be the *n*-th Catalan number.
 - (a) A ballot path of length 2n is lattice path from (0,0) to (n,n) that never rises above y = x. Show that there are C_n ballot paths of length 2n.
 - (b) A ballot list of length 2n is a list of n 1s and n 0s such that every initial segment has at least as many 1s as 0s. Show that there are C_n ballot lists of length 2n.