Math 432 - Combinatorics
 Homework 3

Due: Feb 12 11:58pm, 2016.
Work the following problems. Show all your work. Four points each if not otherwise specified.

1. (6 points) Let a_{n} be the number of n-tuples $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ with $a_{i} \in[4]$ that have at least one 1 and have no 2 appearing before the first 1 .

- Obtain and solve a recurrence for a_{n}.
- Give a direct counting argument (without using summations) to prove the resulting simple formula.

2. Solve the following recurrence relation using characteristic equation method.
$h_{n}=4 h_{n-1}+8 h_{n-2}+3 n,(n \geq 3)$, with $h_{1}=h_{2}=1$.
3. Solve the following recurrence relation using generating function method:

$$
a_{n}=5 a_{n-1}-6 a_{n-2}+2^{n} \text { for } n \geq 3, \text { with } a_{1}=a_{2}=1
$$

4. (6 points) Let a_{n} be the number of words of length n on the alphabet $\{0,1,2\}$ such that 1 and 2 are never adjacent.

- Obtain a recurrence relation for a_{n}.
- Solve for a_{n} using both the characteristic equation method and the generating function method.

5. (6 points) Let $a_{n, k}$ denote the number of ways to partition n people in a row into k groups so that no two consecutive people are in the same group.

- Obtain a recurrence relation for $a_{n, k}$.
- Let $A_{k}(x)=\sum_{n=0}^{\infty} a_{n, k} x^{n}$. Use the generating function method to express $F_{k}(x)$ as a ratio of polynomials.

