Math 432 Homework Six

Due: Friday March 4, 2016

Prove the following statements. Four points for each.
(1) A cycle is a circuit without repeated vertices. Prove that every n-vertex graph with at least n edges contains a cycle.
(2) Prove or disprove: if G is an Eulerian graph with edges e, f that share a vertex, then G has an Eulerian circuit in which e, f appear consecutively.
(3) A list of integers $d_{1}, d_{2}, \ldots, d_{n}$ with $d_{1} \geq d_{2} \geq \ldots \geq d_{n}>0$ is graphic if it is the degree list of some simple graph. Show that
(a) $(7,6,5,4,3,3,2)$ and $(6,6,5,4,3,3,1)$ are not graphic.
(b) if a sequence is graphic, then $\sum_{i=1}^{n} d_{i}$ is even and $\sum_{i=1}^{k} d_{i} \leq k(k-1)+$ $\sum_{i=k+1}^{n} \min \left\{k, d_{i}\right\}$ for $1 \leq k \leq n$.
(c) (bonus problem) the condition in (b) is also sufficient.
(4) Show that the Kruskal's algorithm produces a minimum spanning tree in a weighted connected graph.
(5) We showed in class that every tree is a bipartite graph. Prove that every tree has a leaf in its larger partite set (in both if they have equal size).

