Math 432 Homework Seven

Due: Saturday, March 19, 2016

Prove the following statements. Four points for each.
(1) Prove that Petersen graph has no cycle of length 7 or 10.
(2) Let G be the 3-regular graph with $4 m$ vertices formed from m pairwise disjoint kites (K_{4} minus an edge) by adding m edges to link them in a ring. Prove that it has $2 m \cdot 8^{m}$ spanning trees.
(3) (6 points) Count the following sets of trees with vertex set $[n]=\{1,2, \ldots, n\}$, given two proofs for each: one using the Prufer correspondence and one by direct counting arguments.
(a) trees that have 2 leaves.
(b) trees that have $n-2$ leaves.
(4) Prove that a d-regular simple graph G has a decomposition into copies of $K_{1, d}$ if and only if it is bipartite.
(5) Prove that a graph is bipartite if and only if every subgraph H of G has an independent set consisting of at least half of $V(H)$, where a set of vertices is independent if there is no edge between the vertices in the set.
(6) Let $A=\left(A_{1}, \ldots, A_{m}\right)$ be a collection of subsets of a set Y. A system of distinct representatives (SDR) for A is a set of distinct elements $a_{1}, a_{2}, \ldots, a_{m}$ in Y such that $a_{i} \in A_{i}$. Prove that A has an SDR if and only if $\left|\cup_{i \in S} A_{i}\right| \geq|S|$ for every $S \subseteq\{1,2, \ldots, m\}$.

