Math 432 Homework Eight

Due: Friday, March 25, 2010

Prove the following statements. Four points for each.

- (1) The defect df(S) of a set $S \subseteq X$ in an X, Y-bigraph is defined to be |S| |N(S)|. The matching number $\alpha'(G)$ is defined to be the maximum size of a matching in G. Prove that in an X, Y-bigraph $G, \alpha'(G) = |X| - \max_{S \subseteq X} \{df(S)\}$.
- (2) Use the Konig-Egervary Theorem to prove that every subgraph of $K_{n,n}$ with more than (k-1)n edges has a matching of size at least k.
- (3) Suppose that G is an r-connected graph of even order having no $K_{1,r+1}$ as an induced subgraph. Prove that G has a perfect matching.
- (4) Prove that $\kappa'(G) = \kappa(G)$ if G is a 3-regular simple graph. Find (with proof) the smallest 3-regular simple graph having connectivity 1.
- (5) Let H be the block-cutpoint graph of a graph G that has a cut-vertex.
 (a) prove that H is a forest.
 (b) Prove that G has at least two blocks that contain one cut-vertex of G.
 (c) Prove that every graph has fewer cut-vertices than blocks.
- (6) Suppose that G has no isolated vertices. Prove that if G has no even cycles, then every block of G is an edge or an odd cycle.