Math 432 Lec 02 Counting principles, and binomial coefficient

- Sum principle (counting by cases): If a finite set A is partitioned into sets $B_{1}, B_{2}, \ldots, B_{k}$, then $|A|=\sum_{i=1}^{k}\left|B_{i}\right|$.
- Product principle (counting by steps): If the elements of A are build via (independent) successive choices, then $|A|$ is the product of the numbers of the options for the successive choices.

Ex: How many ways to insert 3 letters to 4 mailboxes? How many functions from X to Y ? How many injections from X to Y ?

- Principle of counting two ways: when two formulas count the same set, their values are equal.

Ex: $\sum_{i=1}^{n-1} i=n(n-1) / 2$: count the pairs of elements in $[n]$, left by larger elements, and right by steps

- Bijection Principle: If there is a bijection from one set to another, then the two sets have the same size.

Ex: the numbers of 0,1 -lists of length n equals the number of subsets of $[n]$.
Examples:
(1) Let $\binom{n}{k}=\frac{n \cdot(n-1) \cdots(n-k+1)}{1 \cdot 2 \cdots k}$. Show that there are $\binom{n}{k} k$-subsets of $[n]$.

In the future, we will associate $\binom{n}{k}$ with the k-subsets of $[n]$.
(2) Properties of $\binom{n}{k}$:
(a) $\binom{n}{k}=\binom{n}{n-k}$ (bijection)
(b) $\sum_{k=0}^{n}\binom{n}{k}=2^{n}$. (count in two ways)
(c) $\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}$ (count in two ways, count by cases)
(3) Binomial formula: $(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k} y^{k}$.

From this formula we can draw the Pascal Triangle.
(4) Counting in poker: an ordinary deck has 52 distinct card. They are grouped into four suits, each with 13 ranked cards.
(a) how many distinct hands with five cards?
$\binom{52}{5}=259860$.
(b) how many "two pairs"?
$\binom{13}{2}\binom{4}{2}\binom{4}{2}\binom{44}{1}$ (we do this in four steps: first choose 2 ranks as pairs, then choose two suites from each of the two chosen ranks, the last step is to choose the fifth card.)
(c) how many "flush"? (a flush consist of five cards in one suit) $4\binom{13}{5}$ (we do this in two steps: first choose a suit among four suits, then choose 5 cards in the chosen suit.)
(d) how many "straights"? (a straight consists of one card each in five consecutive ranks, except the "ace" can be considered either the lowest or the highest rank) $10 \cdot 4^{5}$ (we do this in five steps: first there are 10 possible ranks to start a straight, and for each of the five cards, there are 4 suits to choose.)

