Math 432 Lec 03 Binomial Formula, Combinatorial Identities, and counting models

(1) Binomial formula:

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k} y^{k} .
$$

Prove it in two ways (combinatorial proof and induction proof)
(2) Identities involving binomial coefficients:
(a) $\sum_{i=0}^{\lfloor n / 2\rfloor}\binom{n}{2 i}=\sum_{i=0}^{\lfloor(n-1) / 2\rfloor}\binom{n}{2 i+1}=2^{n-1}$.

Two proofs: set $x=1, y=-1$ in Binomial Formula; or use the formula $\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}$ to show that the sums are just the sums of numbers in the previous row in Pascal Triangle.
(b) $k\binom{n}{k}=n\binom{n-1}{k-1}$, and more general $\binom{k}{l}\binom{n}{k}=\binom{n}{l}\binom{n-l}{k-l}$.

The first one has two methods: count k-member committees with a chair in two ways, or use binomial formula (differentiate both sides). The first method can be used to prove the second identity.
(c) $\sum_{k}\binom{n}{k}^{2}=\binom{2 n}{n}$, and more general, $\sum_{k}\binom{m}{k}\binom{n}{r-k}=\binom{m+n}{r}$. (Vandermonde Convolution)

A sum in an identity suggests that we count something in cases. So the first method is to count the n-subsets of $[2 n]$ in cases. The key is to come out with a right criterion to break them into parts.
You may also try to use the Binomial Formula to prove the first one.
(d) $\sum_{k=r}^{n}\binom{k}{r}=\binom{n+1}{r+1}$

We count the $r+1$-subsets of $[n+1]$ with the largest element $k+1$, $r \leq k \leq n$.

(3) Classic models: words, sets, and multisets

When counting an object, we first have to figure out two factors: order and repetition. If order of elements doesn't matter, then it is either a set (repetition not allowed) or a multi-set (repetition allowed). If order matters, then it is either a simple word (or simple tuple; repetition not allowed) or a word
(repetition allowed).
(a) k-sets: there are $\binom{n}{k} k$-sets in an n-set. Remark: $\binom{n}{k}$ is called binomial coefficients.
(b) k-multisets: Choose a k-element multiset (repetition allowed) from $[n]$.

Theorem: the number of k-multisets from $[n]$ equals to the number of nonnegative integer solutions to $\sum_{i=1}^{n} x_{i}=k$, which equals to $\binom{k+n-1}{n-1}=$ $\binom{k+n-1}{k}$.

Example: What is the number of integral solutions of the equation $x_{1}+$ $x_{2}+x_{3}+x_{4}=10$ in which $x_{1} \geq 3, x_{2} \geq 1, x_{3} \geq 0$ and $x_{4} \geq 5$?
(c) k-word: there are $n^{k} k$-words from an alphabet S of size n.
(d) simple k-word: there are $n_{(k)}$ simple k-words from an alphabet of size n.

Example: How many 4-words can one form from the letters in CLASSIC?
The answer is $5 \cdot 4 \cdot 3 \cdot 2+\binom{4}{2} \cdot 4 \cdot 3 \cdot 2+\binom{4}{2}$. (why?)

