Math 432 Lec 05 Solve recurrence relations by characteristic equation method

Let a_{n} count an object formed from n elements. Like in induction, we sometimes can build a relation $a_{n}=f\left(a_{n-1}, a_{n-2}, \ldots, a_{n-k}\right)$ between a_{n} and a_{n-1}, \ldots, a_{n-k}. This is called a recurrence relation.
(1) homogeneous linear recurrence relations

For $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots+c_{k} a_{n-k}+f(n)$, the associated characteristic polynomial is $\phi(x)=x^{k}-c_{1} x^{k-1}-\ldots-c_{k} x^{0}$, the characteristic equation is $\phi(x)=0$, and its solutions are the characteristic roots.

Theorem. Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}$ with multiplicities $d_{1}, d_{2}, \ldots, d_{r}$ be the distinct characteristic roots of a homogeneous linear recurrence relation (that is $f(n)=0$) of order k with constant coefficients. The solutions have the form $a_{n}=\sum_{i} P_{i}(n) \alpha_{i}^{n}$, where each P_{i} is a polynomial of degree less than d_{i}. This solution is called the general solution to the recurrence.

For example, if the characteristic equation is $(x-1)(x-2)^{3}(x+3)^{2}=0$. Then the general solution would be $f_{1} \cdot 1^{n}+\left(f_{2}+f_{3} n+f_{4} n^{2}\right) \cdot 2^{n}+\left(f_{5}+f_{6} n\right)(-3)^{n}$, where $f_{i}, 1 \leq i \leq 6$ are constants to be determined by the initial terms.

Ex: Solve $a_{n}=a_{n-1}+a_{n-2}$ for $n \geq 2$ with $a_{0}=a_{1}=1$.
(2) inhomogeneous linear recurrence relations

We can follow three steps:

- Find the general solution b_{n} of the homogeneous relations;
- Find a particular solution d_{n} of the nonhomogeneous relation;
- Combine the general solution and the particular solution, and determine the constants arising in the general solutions such that the combined solution satisfies the initial conditions.

Here is a general rule to find a particular solution:
Let $f(n)=F(n) c^{n}$, where $F(n)$ is a polynomial of degree d. If c has multiplicity r as a characteristic root of the homogeneous part (r may be zero), then the recurrence has a solution of the form $P(n) n^{r} c^{n}$, where P is a polynomial of degree at most d.

