Math 432 Lec 06 Solve recurrence using generating functions

Review of the homework and show that the Catalan number $C_{n}=\binom{2 n}{n}-\binom{2 n}{n+1}=\frac{1}{n+1}\binom{2 n}{n}$. The idea of the proof is show the bad ballot paths correspond bijectively to the paths from $(0,0)$ to $(n-1, n+1)$ (show injections in each direction).

Now we look at another way to solve (linear) recurrence (with constant coefficients):
(1) Definition of Generating functions:

With a sequence of numbers $a_{1}, a_{2}, \ldots, a_{n}, \ldots$, we can express these numbers in a formal power series $\sum_{n \geq 0} a_{n} x^{n}$, and this is called the generating function for a_{n}. Here "formal" indicates that x^{n} serves not as a number but rather as a placeholder forthe coefficient a_{n}. It is not really a function, and we don't care whether it is convergent or not. But if it is convergent, we will have a simple function for this power series.

Ex1: $a_{k}=\binom{n}{k}$, and we have $\sum_{k=0}^{n}\binom{n}{k} x^{k}=(1+x)^{n}$.
Ex2: $a_{n}=1$ and we have $\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}$. Here a_{n} is the number of n-multisets formed from a single element (thus only one way).
(2) Extended Binomial Theorem: for $\alpha \in \mathcal{R}$ and $|x|<1$,

$$
(1+x)^{\alpha}=\sum_{k \geq 0}\binom{\alpha}{k} x^{k}, \text { where }\binom{\alpha}{k}=\frac{(\alpha)(\alpha-1)(\alpha-2) \ldots(\alpha-k+1)}{k!}
$$

Proof from calculus (MacLaurin series): let $f(x)=\sum_{k \geq 0} a_{k} x^{k}$, and take n-th derivative of that. Now take $\alpha=-1,-n$,, we get some very useful generating functions:

$$
\frac{1}{1-x}=\sum_{n \geq 0} x^{n}, \quad \frac{1}{(1-x)^{k}}=\sum_{n \geq 0}\binom{k+n-1}{k-1} x^{n}
$$

(3) Solve recurrence relations using generating functions:

Theorem: Let $\alpha_{1}, \ldots, \alpha_{r}$ be distinct numbers satisfying the following equation for complex numbers c_{1}, \ldots, c_{k} with $x_{k} \neq 0$

$$
Q(x)=1-c_{1} x-c_{2} x^{2}-\ldots-c_{k} x^{k}=\prod_{i=1}^{r}\left(1-\alpha_{i} x\right)^{d_{i}}
$$

Then the following are equivalent for a sequence $\langle a\rangle$.
(a) $\langle a\rangle$ satisfies the recurrence $a_{n}=c_{1} a_{n-1}+\ldots+c_{k} a_{n-k}$ for $n \geq k$.
(b) $\langle a\rangle$ has generating function $P(x) / Q(x)$ for some polynomial P of degree less than k.
(c) $\langle a\rangle$ has generating function $\sum_{i=1}^{r} F_{i}(x)\left(1-\alpha_{i} x\right)^{-d_{i}}$, where each F_{i} is a polynomial of degree less than d_{i}.
(d) a_{n} for $n \geq 0$ is given by the formula $a_{n}=\sum_{i=1}^{r} P_{i}(n) \alpha_{i}^{n}$, where each P_{i} is a polynomial of degree less than d_{i}.

Ex: $a_{n}=a_{n-1}+n+2^{n}$ with $a_{1}=1$.

$$
a_{n}=a_{n-1}+n+2^{n}, n \geq 2, \quad a_{1}=1
$$

For $n \geq 2, \quad a_{n} x^{n}=a_{n-1} x^{n}+n x^{n}+2^{n} x^{n}$
So $\sum_{n \geq 2} a_{n} x^{n}=\sum_{n \geq 2} a_{n-1} x^{n}+\sum_{n \geq 2} n x^{n}+\sum_{n \geq 2}(2 x)^{n}$
Let $f(x)=\sum_{n \geqslant 1} a_{n} x^{n}$. Men we have

$$
\begin{aligned}
& f(x)-a_{1} x=x f(x)+x\left(\sum_{n \geqslant 2} x^{n}\right)^{\prime}+\left(\frac{1}{1-2 x}-1-2 x\right) \\
& \Rightarrow(1-x) f(x)=x+x\left(\frac{1}{1-x}-1-x\right)^{\prime}+\frac{1}{1-2 x}-1-2 x \\
& \Rightarrow f(x)= \frac{x}{1-x}+\frac{x}{(1-x)^{3}}-\frac{x}{1-x}+\frac{1}{(1-2 x)(1-x)}-\frac{1+2 x}{1-x} \\
&= \frac{x}{(1-x)^{3}}+\left(\frac{2}{1-2 x}-\frac{1}{1-x}\right) \sim \frac{1+2 x}{1-x} \\
&= x \sum_{n \geqslant 0}\binom{n+2}{2} x^{n}+2 \sum 2^{n} x^{n} \sim 2 \sum_{n \geqslant 0}^{n} x^{n}-2 x \cdot\left(x^{n}\right. \\
& n \geqslant 0 \\
& \approx \sum_{n}\left(\binom{n+1}{2}+2^{n+1}-4\right) x^{n} \\
& n \geqslant 1 \\
& \text { So }\left[x^{n}\right] f(x)=\binom{n+1}{2}+2^{n+1}-4, \quad n \geqslant 1
\end{aligned}
$$

