Math 432 Lec 06 Solve recurrence using generating functions

Review of the homework and show that the Catalan number $C_n = \binom{2n}{n} - \binom{2n}{n+1} = \frac{1}{n+1}\binom{2n}{n}$. The idea of the proof is show the bad ballot paths correspond bijectively to the paths from (0,0) to (n-1, n+1) (show injections in each direction).

Now we look at another way to solve (linear) recurrence (with constant coefficients):

(1) Definition of Generating functions:

With a sequence of numbers $a_1, a_2, \ldots, a_n, \ldots$, we can express these numbers in a formal power series $\sum_{n>0} a_n x^n$, and this is called the generating function for a_n . Here "formal" indicates that x^n serves not as a number but rather as a placeholder for he coefficient a_n . It is not really a function, and we don't care whether it is convergent or not. But if it is convergent, we will have a simple function for this power series.

Ex1: $a_k = \binom{n}{k}$, and we have $\sum_{k=0}^n \binom{n}{k} x^k = (1+x)^n$. Ex2: $a_n = 1$ and we have $\sum_{n=0}^\infty x^n = \frac{1}{1-x}$. Here a_n is the number of *n*-multisets formed from a single element (thus only one way).

(2) Extended Binomial Theorem: for $\alpha \in \mathcal{R}$ and |x| < 1,

$$(1+x)^{\alpha} = \sum_{k \ge 0} {\alpha \choose k} x^k$$
, where ${\alpha \choose k} = \frac{(\alpha)(\alpha-1)(\alpha-2)\dots(\alpha-k+1)}{k!}$

Proof from calculus (MacLaurin series): let $f(x) = \sum_{k>0} a_k x^k$, and take *n*-th derivative of that. Now take $\alpha = -1, -n$, we get some very useful generating functions:

$$\frac{1}{1-x} = \sum_{n \ge 0} x^n, \qquad \frac{1}{(1-x)^k} = \sum_{n \ge 0} \binom{k+n-1}{k-1} x^n$$

(3) Solve recurrence relations using generating functions:

Theorem: Let $\alpha_1, \ldots, \alpha_r$ be distinct numbers satisfying the following equation for complex numbers c_1, \ldots, c_k with $x_k \neq 0$

$$Q(x) = 1 - c_1 x - c_2 x^2 - \dots - c_k x^k = \prod_{i=1}^r (1 - \alpha_i x)^{d_i}$$

Then the following are equivalent for a sequence $\langle a \rangle$.

- (a) $\langle a \rangle$ satisfies the recurrence $a_n = c_1 a_{n-1} + \ldots + c_k a_{n-k}$ for $n \ge k$.
- (b) $\langle a \rangle$ has generating function P(x)/Q(x) for some polynomial P of degree less than k.
- (c) $\langle a \rangle$ has generating function $\sum_{i=1}^{r} F_i(x)(1-\alpha_i x)^{-d_i}$, where each F_i is a polynomial of degree less than d_i .
- (d) a_n for $n \ge 0$ is given by the formula $a_n = \sum_{i=1}^r P_i(n)\alpha_i^n$, where each P_i is a polynomial of degree less than d_i .

Ex: $a_n = a_{n-1} + n + 2^n$ with $a_1 = 1$.

$$\begin{split} & (\prod_{n=1}^{n} = (\prod_{n-1}^{n} + n + 2), n \ge 2, q = 1) \\ & (\prod_{n=1}^{n} = (\prod_{n-1}^{n} + n + 2), n + 2), n \ge 2, q = 1, n + 2, n \ge 2$$