Math 432 Lec 07 Generating function -1

(1) Operation on generating functions.

Let $A(x)=\sum_{n \geq 0} a_{n} x^{n}$ and $B(x)=\sum_{n \geq 0} b_{n} x^{n}$ be two generating functions. Addition: $A(x)+B(x)=\sum_{n \geq 0}\left(a_{n}+b_{n}\right) x^{n}$ (count by cases)

Multiplication: $A(x) B(x)=\sum_{n \geq 0}\left(\sum_{k=0}^{n} a_{n-k} b_{k}\right) x^{n}$ (count by steps). This is also called convolution of two generating functions.

Let $C(x)=\sum_{n \geq 0} C_{n} x^{n}$. Then

$$
C_{n}=\sum_{k=0}^{n} a_{n-k} b_{k} \text { if and only if } C(x)=A(x) B(x)
$$

(2) Solve selection problems with restrictions.

We know from Extended Binomial Formula that $(1-x)^{-k}=\sum_{n \geq 0}\binom{k+n-1}{k-1} x^{n}$. But we can also see this from a multiplication of n of $(1-x)^{-1}$. Suppose that we choose $x^{a_{i}}$ from i-th $(1-x)^{-1}$, then the coefficient of x^{n} in $(1-x)^{-k}$ is the nonnegative integer solutions to $a_{1}+a_{2} \ldots+a_{k}=n$, which we know is $\binom{n+k-1}{k-1}$.

This idea helps to solve selection problems with more restrictions.

Ex: Find the number of nonnegative integer solutions to $x_{1}+x_{2}+x_{3}+x_{4}=n$ so that $4\left|x_{1}, 3\right| x_{2}$ and x_{2} is even.

By let $x_{1}=4 a_{1}, x_{2}=3 a_{2}, x_{3}=2 a_{3}$ and $x_{4}=a_{4}$, we ask for a_{n}, the number nonnegative integer solutions to $4 a_{1}+3 a_{2}+2 a_{3}+a_{4}=n$. Note that a_{n} is the coefficient of the generating function

$$
\begin{aligned}
& \left(1+x^{4}+x^{8}+\ldots\right)\left(1+x^{3}+x^{6}+\ldots\right)\left(1+x^{2}+x^{4}+\ldots\right)\left(1+x+x^{2}+\ldots\right) \\
= & \left(1-x^{4}\right)^{-1}\left(1-x^{3}\right)^{-1}\left(1-x^{2}\right)^{-1}(1-x)^{-1}=(1-x)^{-4}(1+x)^{-2}\left(1+x^{2}\right)^{-1}\left(1+x+x^{2}\right)^{-1} \\
= & \frac{A_{1}}{1-x}+\frac{A_{2}}{(1-x)^{2}}+\frac{A_{3}}{(1-x)^{3}}+\frac{A_{4}}{(1-x)^{4}}++\frac{B_{1}}{(1+x)}+\frac{B_{2}}{(1+x)^{2}}+\frac{C_{1} x+c_{2}}{1+x^{2}}+\frac{D_{1} x+D_{2}}{1+x+x^{2}}
\end{aligned}
$$

(3) Solve recurrence relations

Ex. The Catalan number C_{n} satisfies the recurrence relations $C_{n}=\sum_{k=1}^{n} C_{k-1} C_{n-k}$ for $n \geq 1$, with $C_{0}=1$. Find the general formula for C_{n} only in terms of n.

From $C_{n}=\sum_{k=1}^{n} C_{k-1} C_{n-k}$, we multiply both sides with x^{n} and then sum over all $n \geq 1$, we get $\sum_{n \geq 1} C_{n} x^{n}=\sum_{n \geq 1} \sum_{k=1}^{n} C_{k-1} C_{n-k} x^{n}$. The LHS is
$C(x)-1$. For RHS, we first make a substitution $\ell=k-1$ and then a substitution $m=n-1$, we get

$$
C(x)-1=L H S=R H S=x \cdot \sum_{m \geq 0} \sum_{\ell=0}^{m} C_{\ell} C_{m-\ell} x^{m}=x(C(x))^{2}
$$

So $C(x)=\frac{1 \pm \sqrt{1-4 x}}{2 x}$. Note that

$$
\sqrt{1-4 x}=(1-4 x)^{1 / 2}=\sum_{n \geq 0}\binom{1 / 2}{n}(-4 x)^{n}=1+\sum_{n \geq 1} \frac{-2}{n}\binom{2(n-1)}{n-1} x^{n}
$$

So $C(x)=\frac{1-\sqrt{1-4 x}}{2 x}$ (if take + , then there is $1 / x$ in $C(x)$, which is not allowed), and

$$
C(x)=\sum_{n \geq 1} \frac{1}{n}\binom{2(n-1)}{n-1} x^{n-1}=\sum_{m \geq 0} \frac{1}{m+1}\binom{2 m}{m} x^{m}
$$

Take the coefficient of x^{n}, we get $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$.
(4) Generating function for recurrences with multiple indices, for example, $a_{n, k}$.

We fix n, and get $A_{n}(x)=\sum_{k \geq 0} a_{n, k} x^{k}$. Then let $B(x, y)=\sum_{n \geq 0} A_{n}(x) y^{n}$.
Ex: Let $a_{n, k}=a_{n-1, k-1}+a_{n-1, k}$ for $n \geq 1$ and $a_{0,0}=1, a_{0, k}=1$ for $k \geq 1$. (Recurrence for Pascal's triangle)

We can first get $A_{n}(x)=(1+x)^{n}$, and then get $B(x, y)=(1-(1+x) y)^{-1}$.

