Math 432 Lec 08 Generating functions -2

We may operate on the OGFs and on the expansions without losing equality. This may allow us to use OGF to prove something pleasantly.

Some basic propositions:
(1) shifting the index.

$$
\sum_{k \geq 0}\binom{k}{r} x^{k}=\sum_{k \geq r}\binom{k}{r} x^{k}=\sum_{m \geq 0}\binom{m+r}{r} x^{m+r}=\frac{x^{r}}{(1-x)^{r+1}}
$$

Let A, B, C be are the OGFs for $\langle a\rangle,\langle b\rangle,\langle c\rangle$, respectively, then
(2) $c_{n}=a_{n}+b_{n}$ for all n if and only if $C(x)=A(x)+B(x)$.
(3) $c_{n}=\sum_{i=0}^{n} a_{i} b_{n-i}$ for all n iff $C(x)=A(x) B(x)$.
(4) $b_{n}=\left\{\begin{array}{l}a_{n-k}, \text { for } n \geq k \\ 0, \text { for } n<k\end{array} \quad\right.$ if and only if $B(x)=x^{k} A(x)$.
(5) $c_{n}=\sum_{i=0}^{n} a_{i}$ for all i if and only if $C(x)=\frac{A(x)}{1-x}$.
(6) $b_{n}=\left\{\begin{array}{l}a_{n} \text { for } n \text { even } \\ 0 \text { for } n \text { odd }\end{array} \quad\right.$ if and only if $B(x)=0.5(A(x)+A(-x))$.
(7) $b_{n}=\left\{\begin{array}{l}0, \text { for } n \text { even } \\ a_{n}, \text { for } n \text { odd }\end{array} \quad\right.$ if and only if $B(x)=0.5(A(x)-A(-x))$.
(8) $b_{n}=\left\{\begin{array}{l}a_{k}, \text { for } n=m k \\ 0, \text { otherwise }\end{array} \quad\right.$ if and only if $B(x)=A\left(x^{m}\right)$.
(9) $b_{n}=n a_{n}$ if and only if $B(x)=x A^{\prime}(x)$.

Examples:

- $\sum_{i \geq 0}\binom{n}{2 i}$.

The sum is the value at $x=1$ of $B(x)=\sum\binom{n}{2 i} x^{2 i}$. Let $A(x)=\sum_{i}\binom{n}{i} x^{i}=$ $(1+x)^{n}$. Then $B(x)=\frac{A(x)+A(-x)}{2}$. So the sum is $B(1)=2^{n-1}$.

- $\sum_{k \geq 0} k^{m}$.

Consider $\sum_{k \geq 0} k^{m} x^{k}$. (work out for $m=2$)

- $\sum_{k=0}^{r}\binom{m}{k}\binom{n}{r-k}$.

The convolution of $a_{k}=\binom{m}{k}$ and $b_{k}=\binom{n}{k}$. So the sum is $\left[x^{r}\right](1+x)^{m}(1+x)^{n}=$ $\left[x^{r}\right](1+x)^{m+n}=\binom{m+n}{r}$.

- $\sum_{k=0}^{n} k(n-k)$.

The convolution of $a_{k}=b_{k}=k$. So the sum is

$$
\left[x^{n}\right]\left(\sum_{k} k x^{k}\right)^{2}=\left[x^{n}\right] \frac{x^{2}}{(1-x)^{4}}=\left[x^{n-2}\right] \frac{1}{(1-x)^{4}}=\binom{n+1}{3}
$$

Snake Oil method: When n is a parameter in a sum, we can always multiply by x^{n} to form an OGF $A(x)$. Then interchange the order of summation in the expression for $A(x)$ and perform the new inner sum on n explicitly.

Ex. $\sum_{k}\binom{m}{k}\binom{n+k}{m}=\sum_{k}\binom{m}{k}\binom{n}{k} 2^{k}$.
Multiply both sides by x^{n} and sum over n, and interchange the order of the summation.

$$
\begin{aligned}
& L H S=\sum_{k}\binom{m}{k} x^{-k} \sum_{n \geq 0}\binom{n+k}{m} x^{n+k}=\frac{x^{m}}{(1-x)^{m+1}} \sum_{k}\binom{m}{k} x^{-k}=\frac{x^{m}\left(1+x^{-1}\right)^{m}}{(1-x)^{m+1}}=\frac{(1+x)^{m}}{(1-x)^{m+1}} . \\
& R H S=\sum_{k}\binom{m}{k} 2^{k} \sum_{n \geq 0}\binom{n}{k} x^{n}=\frac{1}{1-x} \sum_{k}\binom{m}{k} 2^{k}\left(\frac{x}{1-x}\right)^{k}=\frac{1}{1-x}\left(1+\frac{2 x}{1-x}\right)^{m}=\frac{(1+x)^{m}}{(1-x)^{m+1}} .
\end{aligned}
$$

