## Math 431 Lecture 10: Exponential Generating Functions

The exponential generating function (EGF) for a series $a_{0}, a_{1}, \ldots, a_{n}, \ldots$ of complex numbers is the formal power series $g(x)=\sum_{k=0}^{\infty} a_{k} \frac{x^{k}}{k!}$. Note that if $a_{n}=1$ for all $n$, then

$$
g(x)=\sum_{n \geq 0} \frac{x^{n}}{n!}=e^{x} .
$$

- OGF is usually used for set/multiset problems (selection problems), while EGF is usually used for word/multiword problems (permutation problems), in which order is important.
- The product of EGFs corresponds to forming order/label structures in steps, where the steps are described by allocation of labels.

Theorem: Let $S$ be the multiset $\left\{n_{1} \cdot a_{1}, n_{2} \cdot a_{2}, \ldots, n_{k} \cdot a_{k}\right\}$, where $n_{1}, n_{2}, \ldots, n_{k}$ are non-negative integers or infinite. Let $h_{n}$ be the number of $n$-words of $S$.
Then the EGF for $h_{0}, h_{1}, \ldots, h_{n}, \ldots$ is

$$
g(x)=f_{n_{1}}(x) f_{n_{2}}(x) \ldots f_{n_{k}}(x), \text { where } f_{n_{i}}(x)=\sum_{k=0}^{n_{i}} \frac{x^{k}}{k!} .
$$

Examples:
(1) $n$-ary words of length $k$. The labels are the $k$ positions and we allocate $k$ labels to $n$ sets. The EGF is $\sum_{k=0}^{\infty} n^{k} \frac{x^{k}}{k!}=e^{n x}$. On the other hand, the EGF is the product of the EGFs associated with each letter, and each of those EGFs is $e^{x}$.
(2) Words with restricted usage of letters.

- When no restriction for multiplicity, the EGF for each letter is $e^{x}$.
- When each letter must be used, the EGF for each letter is $e^{x}-1$.
- If each letter is used to at most once, the EGF is $1+x$. Thus the EGFs for simples words from $k$ letters is $(1+x)^{k}$, and the number of simple words of length $n$ formed from $[k]$ is $k(k-1) \ldots(k-n+1)=k_{(n)}$.
- If a letter is used even times, then the EGF is

$$
1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\ldots=0.5\left(e^{x}+e^{-x}\right)
$$

- If a letter is used odd times, then the EGF is

$$
x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\ldots=0.5\left(e^{x}-e^{-x}\right)
$$

Example: Determine the number of $n$-digit numbers with each digit odd, where the digits 1 and 3 occur an even number of times, and 5 occur at least once.

$$
\begin{aligned}
g(x) & =\left(1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\ldots\right)^{2}\left(1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots\right)^{3} \\
& =\left(\frac{e^{x}+e^{-x}}{2}\right)^{2} \cdot e^{3 x}=\frac{1}{4}\left(e^{5 x}+2 e^{3 x}+e^{x}\right)=\frac{1}{4} \sum_{n=0}^{\infty}\left(5^{n}+2 \cdot 3^{n}+1\right) \frac{x^{n}}{n!}
\end{aligned}
$$

