Math 432 lec 13 Cayley formula, bipartite graph and matching

(1) How many trees do we have with vertex set [n ? ?

Cayley's formula: there are n^{n-2} spanning trees in a labelled K_{n}.
Proof: we build a bijection from $(n-2)$-list of $[n]$ to labelled spanning trees of K_{n} :
(Prufer code method) For each spanning tree, we repeatedly delete the least labelled leaf and put its neighbor in the list, until we have two vertices left. Then we have a $(n-2)$-list of $[n]$.

For each list $\left(t_{1}, t_{2}, \ldots, t_{n-2}\right)$, we choose the least number $s_{1} \in[n]-\left\{t_{i}: 1 \leq i \leq n-2\right\}$ and let it adjacent to t_{1}; then choose the least number $s_{2} \in[n]-\left\{s_{1}, t_{i}: 2 \leq i \leq n-2\right\}$ and let it adjacent to t_{2}; repeat this, until we have exhausted the list. Now we have $n-2$ edges and join the two vertices in $[n]-\left\{s_{1}, s_{2}, \ldots, s_{n-2}\right\}$.
(2) A forest is a graph without any cycles. So a tree is a connected forest, and the components of a forest are trees. Let $w(F)$ be the number of components of F. Then a forest has at least $2 w(F)$ leaves, and $n-w(F)$ edges.
(3) A bipartite graph G is a graph whose vertices can be partitioned into two parts (A and B) so that all the edges are between the two parts.

A tree is a bipartite graphs. (pf: start from a vertex, do a BFS search, and label the vertices in each level alternatively by 0 and 1.)
(4) Thm: A graph is bipartite if and only if it contains no odd cycle. (proof?)
(5) Def: The n-cube Q_{n} : the vertex set consists of all binary n-tuples, and two vertices are adjacent if the two n-tuples differ by exactly one coordinate. One may see Q_{2} is 4 -cycle.

Why is Q_{n} a bipartite graph for any n ?
(6) Def: A matching is a collection of edges which share no endpoint. A maximum matching is a matching with largest size in the graph; a maximal matching is one which cannot be enlarged. A perfect matching is one covering all the vertices (thus contains $n / 2$ edges).
(7) Can you show a graph and a maximal matching in it which is not a maximum matching?

