## Math 432 lec 18 Planar graphs

Def: curve, polygonal curve, drawing, crossing. Planar graph (A graph is planar if it can be drawn on the plane so that no crossing edges), plane graph (a drawing of a planar graph on a plane is called a plane graph). open set, region and faces.

Jordan Curve Theorem: A simple closed polygonal curve $C$ consisting of finitely many segments partitions the plane into exactly two faces, eating having $C$ as boundary.

Thm: $K_{5}$ and $K_{3,3}$ cannot be drawn on the plane without crossings. (pf: a separating cycle with two many chords)

Thm (Kuratowski 1930) a graph is planar iff it does not contain a subdivision of $K_{5}$ or $K_{3,3}$.
Def: Dual graph $G^{*}$. face degree.
Prop: $\sum_{F} d(F)=2 e(G)$.
Euler formula: connected plane graph has $n-e+f=2$. (pf: induction on $e$ )
Thm: if $G$ is a simple planar graph with $n \geq 3$, then $e(G) \leq 3 n-6$; if $G$ has girth $g$ (the length of the shortest cycle), then $e(G) \leq \frac{g}{g-2}(n-2)$; in particular, if $G$ is bipartite, then $e(G) \leq 2 n(G)-4$.

Application of Euler formula on Regular polyhedra (Platonic solids): tetrahedron (4-face), cube(6-face), octahedron(8-face), dodecahedron(12-face), icosahedron (20-face)

