
Lec22 Ramsey Theory

Example: Among any six people, there are three mutual acquaintances or three

mutual strangers.

Roughly speaking, Ramsey Theory states that for any k-coloring of the t-subsets of

an n-set S, if n is large enough, then there is N -subset, whose elements have the same

color. More precisely,

Definition 1. Given k, t, p1, p2, . . . , pk, there exists an integer N , such that for any k-

coloring of the t-subsets of an N-set S, there is a pi-subset whose elements are colored

with ith-color. The smallest integer N is called the Ramsey Number R(p1, p2, . . . , pk; t).

Thus

(1) For t = 1, R(p1, p2, . . . , pk; 1) = p1+p2+. . .+pk−(k−1), which is the the strong

form of pigeonhole principle. That is, if we put p1 + p2 + . . .+ pk − (k− 1)

objects into k classes, then ith-class has more than pi objects for some i.

(2) For t = 2, that is the edge-coloring of an n-vertex complete graph. It states that

if n ≥ R(p1, p2, . . . , pk), then for any k-edge-coloring of Kn, there is a complete

subgraph Kpi whose edges are all colored with ith-color.

Especially, R(3, 3) = 6R(3, 4) = 9 (To show R(3, 4) ≤ 9, we prove that some

vertex is incident with at most 2 red edges, thus at most 6 blue edges, and the

6 endpoints contain a monochromatic triangle)

We may also prove that R(p, q) ≤ R(p− 1, q) + R(p, q − 1). (how?)

(3) For t ≥ 3, we color the edges of hypergraphs. For example, the meaning

of R(m,m; 3) is that for any 2-coloring of the 3-subsets of an R(m,m; 3)-set,

there is an m-subset whose 3-subsets have the same color.

It is very hard to determine the exact values of Ramsey numbers. We only know

very few of them.

• R(n, 2) = R(2, n) = n.

• R(3, n) for n ≤ 9 are know. Especially R(3, 3) = 6 and R(3, 4) = 9.

• R(p, q) ≤
(
p+q−2
p−1

)
.

• R(k, k) is of special interest to people. From above, we know R(k, k) ≤ 4k.

• For a lower bound of R(k, k), Erdos used a probability method showing that if(
n
k

)
(1/2)(

k
2) < 1, then R(k, k) > n. This shows that R(k, k) >

√
2
k
. Note that(

n
k

)
< (ne/k)k.

Examples:

(1) Happy End Problem For an integer m, there is an integer N(m) such that every

set of at least N(m) points in the plane (no three on a line) contains an m-subset

forming a convex m-gon.
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Proof. Fact one: Among any five points in the plane, four determine a

convex quadrilateral. (why?)

Fact two: If very 4-subset of m-points in the plane form a convex quadrilat-

eral, then the m points form a convex m-gon. (why?)

Now take N = R(m, 5; 4) and color each 4-set red if it forms a convex gon,

otherwise, color it blue. Then we will have an m-set so that every 4-subset

forms a convex 4-gon. So those m points form a convex m-gon.

(2) The Schur Theorem Given k > 0, there exists an integer sk such that every k-

coloring of the integers 1, 2, . . . , sk yields monochromatic x, y, z (not necessarily

distinct) satisfying x + y = z.

Proof. Let sk = Rk(3; 2)+1. Let f be a k-coloring of the integers 1, 2, . . . , sk.

Let f ′ be a k-coloring of the 2-subsets (edges) of the set {1, 2, . . . , sk} defined

by f ′({a, b}) = f(|a− b|).
Then by definition, there are three integers a, b and c (assume a < b < c) such

that c− b, b− a, c− a are of the same color. Let x = c− b, y = b− a, z = c− a,

then f(x) = f(y) = f(z) and x + y = z.

Remark: This theorem is a special case of the Van der Waerden Theorem

which states that for any given positive integers l, k, there exists an integer

w(l.k) such that every k-coloring of 1, 2, . . . , w(l, k) contains a monochromatic

l-term arithmetic progression.

Defintion: Graph Ramsey Number R(G,H) be the minimum n such that in every

2-edge-coloring of Kn, there exists either a monochromatic G or a monochromatic H.

Thm: R(2k2, 2K2) = 5.

Thm (Burr-Erdos-Spencer) if m ≥ 2, then R(mK3,mK3) = 5m.

Proof: Let red graph be K3m−1 + K1,2m−1. So 5m is a lower bound.

For upper bound, use induction on m. m = 2 is homework. For m ≥ 3, we have

5m− 3m ≥ R(3, 3) = 6, so we can delete m monochromatic disjoint triangles. If they

all have the same number, we are done. Otherwise, there is a red S and a blue triangle

T . Among the 9 edges between S and T , we may assume there are at least 5 red ones.

So we can find a red and a blue triangle on five vertices. Now use induction on the

remaining 5m− 5 vertices.


