Lec22 Ramsey Theory

Example: Among any six people, there are three mutual acquaintances or three mutual strangers.

Roughly speaking, Ramsey Theory states that for any k-coloring of the t-subsets of an n-set S, if n is large enough, then there is N-subset, whose elements have the same color. More precisely,

Definition 1. Given $k, t, p_{1}, p_{2}, \ldots, p_{k}$, there exists an integer N, such that for any k coloring of the t-subsets of an N-set S, there is a p_{i}-subset whose elements are colored with $i^{\text {th }}$-color. The smallest integer N is called the Ramsey Number $R\left(p_{1}, p_{2}, \ldots, p_{k} ; t\right)$.

Thus
(1) For $t=1, R\left(p_{1}, p_{2}, \ldots, p_{k} ; 1\right)=p_{1}+p_{2}+\ldots+p_{k}-(k-1)$, which is the the strong form of pigeonhole principle. That is, if we put $p_{1}+p_{2}+\ldots+p_{k}-(k-1)$ objects into k classes, then $i^{t h}$-class has more than p_{i} objects for some i.
(2) For $t=2$, that is the edge-coloring of an n-vertex complete graph. It states that if $n \geq R\left(p_{1}, p_{2}, \ldots, p_{k}\right)$, then for any k-edge-coloring of K_{n}, there is a complete subgraph $K_{p_{i}}$ whose edges are all colored with $i^{\text {th }}$-color.

Especially, $R(3,3)=6 R(3,4)=9$ (To show $R(3,4) \leq 9$, we prove that some vertex is incident with at most 2 red edges, thus at most 6 blue edges, and the 6 endpoints contain a monochromatic triangle)

We may also prove that $R(p, q) \leq R(p-1, q)+R(p, q-1)$. (how?)
(3) For $t \geq 3$, we color the edges of hypergraphs. For example, the meaning of $R(m, m ; 3)$ is that for any 2 -coloring of the 3 -subsets of an $R(m, m ; 3)$-set, there is an m-subset whose 3 -subsets have the same color.

It is very hard to determine the exact values of Ramsey numbers. We only know very few of them.

- $R(n, 2)=R(2, n)=n$.
- $R(3, n)$ for $n \leq 9$ are know. Especially $R(3,3)=6$ and $R(3,4)=9$.
- $R(p, q) \leq\binom{ p+q-2}{p-1}$.
- $R(k, k)$ is of special interest to people. From above, we know $R(k, k) \leq 4^{k}$.
- For a lower bound of $R(k, k)$, Erdos used a probability method showing that if $\binom{n}{k}(1 / 2)_{\binom{k}{2}}^{2}<1$, then $R(k, k)>n$. This shows that $R(k, k)>\sqrt{2}^{k}$. Note that $\binom{n}{k}<(n e / k)^{k}$.
Examples:
(1) Happy End Problem For an integer m, there is an integer $N(m)$ such that every set of at least $N(m)$ points in the plane (no three on a line) contains an m-subset forming a convex m-gon.

Proof. Fact one: Among any five points in the plane, four determine a convex quadrilateral. (why?)

Fact two: If very 4 -subset of m-points in the plane form a convex quadrilateral, then the m points form a convex m-gon. (why?)

Now take $N=R(m, 5 ; 4)$ and color each 4 -set red if it forms a convex gon, otherwise, color it blue. Then we will have an m-set so that every 4 -subset forms a convex 4 -gon. So those m points form a convex m-gon.
(2) The Schur Theorem Given $k>0$, there exists an integer s_{k} such that every k coloring of the integers $1,2, \ldots, s_{k}$ yields monochromatic x, y, z (not necessarily distinct) satisfying $x+y=z$.

Proof. Let $s_{k}=R_{k}(3 ; 2)+1$. Let f be a k-coloring of the integers $1,2, \ldots, s_{k}$. Let f^{\prime} be a k-coloring of the 2 -subsets (edges) of the set $\left\{1,2, \ldots, s_{k}\right\}$ defined by $f^{\prime}(\{a, b\})=f(|a-b|)$.

Then by definition, there are three integers a, b and c (assume $a<b<c$) such that $c-b, b-a, c-a$ are of the same color. Let $x=c-b, y=b-a, z=c-a$, then $f(x)=f(y)=f(z)$ and $x+y=z$.

Remark: This theorem is a special case of the Van der Waerden Theorem which states that for any given positive integers l, k, there exists an integer $w(l . k)$ such that every k-coloring of $1,2, \ldots, w(l, k)$ contains a monochromatic l-term arithmetic progression.
Defintion: Graph Ramsey Number $R(G, H)$ be the minimum n such that in every 2-edge-coloring of K_{n}, there exists either a monochromatic G or a monochromatic H.

Thm: $R\left(2 k_{2}, 2 K_{2}\right)=5$.
Thm (Burr-Erdos-Spencer) if $m \geq 2$, then $R\left(m K_{3}, m K_{3}\right)=5 m$.
Proof: Let red graph be $K_{3 m-1}+K_{1,2 m-1}$. So $5 m$ is a lower bound.
For upper bound, use induction on m. $m=2$ is homework. For $m \geq 3$, we have $5 m-3 m \geq R(3,3)=6$, so we can delete m monochromatic disjoint triangles. If they all have the same number, we are done. Otherwise, there is a red S and a blue triangle T. Among the 9 edges between S and T, we may assume there are at least 5 red ones. So we can find a red and a blue triangle on five vertices. Now use induction on the remaining $5 m-5$ vertices.

