Lec23 Latin squares

A Latin square of order n is a $n \times n$ array, each cell containing one entry from the set $[n]$, with the property that each element of $[n]$ occurs once in each row and once in each column of the array.

Notice that each row and each column is a permutation of $[n]$. We may think a $n \times n$ latin square as a 1 -factorization of $K_{n, n}$.

Prop: The number of Latin squares of order n is at least $n!(n-1)!\cdot 2!\cdot 1$!. (proof: use Hall's theorem from one row to n rows)

Trivially, there are at most $n^{n^{2}}$ Latin squares of order n, since each cell has at most n choices. Note that each row has at most n ! choices, there are at most $(n!)^{n}$ Latin squares of order n. One can even do better by noting that the other rows are derangements of first row, so there are at most $n!\cdot(d(n))^{n-1}$ Latin squares of order n, where $d(n)$ is the number of derangements of $[n]$ (which is approximately $n!/ e)$.

Two Latin squares of order n have in total n^{2} pairs of positions. They are orthogonal if the pairs are all different. Thus, any pair (i, j) with $i, j \in[n]$ appear once and exactly once in the two Latin squares.

Def: A family of Latin squares of order n are mutually orthogonal (MOLS) if any pair of them are pairwise orthogonal.

Prop: there are at most $n-1$ MOLS of order n. (Proof: Let's normalize the LS so that the first rows are $1234 \cdots n$. Then in a particular position below the first row, the values in all Latin squares in the family must be distinct. They also must be different from the column index. There are only $n-1$ such values and thus at most $n-1$ squares in the family.)

A MOLS of order n is a complete family if the size of the family is $n-1$. In this case, it is called $\operatorname{MOLS}(n, n-1)$.

When does a $\operatorname{MOLS}(\mathrm{n}, \mathrm{n}-1)$ exist?
Theorem (Moore 1896, Bose 1938, Stevens 1939) If n is a power of a prime, then there is a complete family $\operatorname{MOLS}(n, n-1)$.

Proof: For any power of prime $n=p^{m}$, there is a finite field F_{n}. Let $x_{1}, x_{2}, \ldots, x_{n}$ be the elements of F_{n} with x_{n} be the additive identity (or 0). For each $k \in[n-1]$, we put $x_{k} x_{i}+x_{j}$ in the (i, j) position. So thus defines $n-1$ squares. Now we can show there are all Latin squares and also pairwise orthogonal.

If the pair at (i, j) position in k, l-th Latin square has the same value as pair in (s, t) position in k, l-th Latin squares, then $x_{k} x_{i}+x_{j}=x_{k} x_{s}+x_{t}$ and $x_{l} x_{i}+x_{j}=x_{l} x_{s}+x_{t}$. We get $x_{i}=x_{s}$ and $x_{j}=x_{t}$.

Theorem (Moore 1896) Given $\operatorname{MOLS}(n, h)$ and $\operatorname{MOLS}(m, h)$, we can get $M O L S(m n, h)$. (Proof: we crone each cell in one family to a Latin square $\left(a_{i j}, B_{t}\right)$.)

As a corollary, $n=\prod_{i} p_{i}^{e_{i}}$ can be written as a product of prime powers, so we can get a set $\min _{i}\left\{p_{i}^{e_{i}}\right\}$ of orthogonal Latin squares of order n.

But when $n=2(2 k+1)$, this method doesn't give any pair of orthogonal Latin squares. Euler conjectured that for any number $n \equiv 2 \bmod 4$, there is no orthogonal Latin squares of order n. Let $N(n)$ be the number of orthogonal Latin squares of n. Then $N(2)=1$, and $N(6)=1$ (hard), so Euler was right on those two. But $N(n)>1$ for any $n>6$. But it not know if $N(10) \geq 3$.

