
Lec 24-25 Extremal Set Theory

Problem: Given a family of k-sets of [n], when are the t-sets contained in those

k-sets minimized?

Definition: a k-uniform family is a family of k-sets. The t-shadow of a set system F is

the family of all t-sets contained in members of F . The shadow ∂F of a k-uniform family F
is its (k− 1)-shadow. The shade is the family of all (k+ 1)-sets that contain members of F .

In the language of shadow, we want to find the family with the smallest shadow, among

all k-uniform families of size m.

Lem: k-sets can be indexed, and can also be bijectively mapped to binary k-words.

Colex ordering: a colex ordering on a family of k-sets is obtained by putting x < y if

xi < yi in the highest coordinate where their binary incidence vector differ.

Example: the lexicographic order of
(
[N ]
3

)
is 123, 124, 125, 126, . . . , 134, 135, 136, . . . , 234, 235, . . .;

the colex ordering for
(
[5]
3

)
is: 123, 124, 134, 234, 125, 135, 145, 235, 245, 345.

Lemma: If the vector with index m, where m ≥ 1, in the colex ordering on
(
[n]
k

)
has 1s

in position m1,m2, . . . ,mk, then

m =

(
mk − 1

k

)
+

(
mk−1 − 1

k − 1

)
+ . . .+

(
m1 − 1

1

)
+ 1.

Proof: Let σ be the vector with index m. To reach σ, we must skip all vectors whose kth

1 appear before position mk, and there are
(
mk−1

k

)
of these. In addition, some vectors with

last 1 in position mk precede σ, and their first k− 1 1s precede position mk−1, and there are(
mk−1−1

k−1

)
of these. Continuing this procedure.

Definition: (k-binary expansion of m) For given k, each position integer m can be ex-

pressed in the form
(
mk

k

)
+
(
mk−1

k−1

)
+ . . .+

(
mi

i

)
with mk > mk−1 > . . . > mi ≥ i.

Lemma: The shadow of the first m vectors in the colex order on
(
[n]
k

)
consists of the first

∂k(m) =
(
mk

k−1

)
+
(
mk−1

k−2

)
+ . . .+

(
mi

i−1

)
vectors in the colex order on

(
[n]
k−1

)
.

The Kruskal-Katona Theorem: The shadow of a family of m elements of
(
[n]
k

)
is

minimized by the family consisting of the first m elements in the colex ordering on
(
[n]
k

)
.

Furthermore, the size of the shadow is ∂k(m).

Proof: let F be a set of m elements in
(
[n]
k

)
. The compression of F is the set CF con-

sisting of the first |F| elements in the colex ordering on
(
[n]
k

)
. The idea is to show that

|∂(CF)| ≤ |∂F| when F ⊂
(
[n]
k

)
.
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Problems: what is the maximum size of a family of sets in which no member

contains another (antichain)?

Definition: an antichain of sets is a family of sets in which no member contains another.

Theorem (LYM inequality) Let F be an antichain on [n]. Let Fk = F∩
(
[n]
k

)
and ak = |Fk|.

Then
∑

k
ak

(n
k)
≤ 1.

Proof: Counts the permutations of X in two different ways. First, by counting all permu-

tations of X directly (n!). But secondly, one can generate a permutation (i.e., an order) of

the elements of X by selecting a set S in A and concatenating a permutation of the elements

of S with a permutation of the nonmembers (elements of X − S). If |S| = k, it will be

associated in this way with k!(n−k)! permutations, and in each of them the first k elements

will be just the elements of S. Each permutation can only be associated with a single set in

A, for if two prefixes of a permutation both formed sets in A then one would be a subset of

the other. Therefore, the number of permutations that can be generated by this procedure

is
∑

S∈A |S|!(n− |S|)! =
∑

k akk!(n− k)! ≤ n!. It follows that
∑

k
ak

(n
k)
≤ 1.

Proof: by using probabilistic method. Choose a maximal chain C uniformly random.....

Theorem: (Sperner) The maximum size of an antichain of subsets of [n] is
(

n
bn/2c

)
,

achieved only by antichains whose sets all have the same size.

Proof (using LYM inequality): By LYM inequality, 1 ≥
∑

k
ak

(n
k)
≥
∑

k
ak

( n
bn/2c)

= |F |
( n
bn/2c)

.
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Problems: what is the maximum size of a family of sets in which no member

contains another (antichain) and is also required to be pairwise intersecting?

Definition: An t-intersecting family is a family in which every two sets have at least t

common elements. A star is a family of sets having a universal common element; a t-star is

a family sharing t universal common elements.

Example: an intersecting family of subsets of [n] has size at most 2n−1.

An other maximum intersecting family consists of all sets with more than half the elements,

plus (when n is even) the sets of size n/2 containing a particular element.

Definition: An EKR(k, t)-family is an antichain F that is also a t-intersecting family in

which the size of each member is at most k.

Theorem: (Erdos-Ko-Rado, t=1) For n ≥ 2k, the maximum size of an EKR(k, 1)-family

is
(
n−1
k−1

)
, achieved by a star in

(
[n]
k

)
.

Proof. Let F be such a family. We may assume that F ⊆
(
[n]
k

)
.

Given a circular arrangement σ of [n], we ask how many members of F can occur in σ as

a consecutive string of elements. For such a string x, every consecutive k-set that intersects

x has a boundary at one of the k − 1 locations between elements of x. Hence at most k − 1

members of F other than x occur consecutively in σ.

Summing this over all (n− 1)! circular permutations yields at most (n− 1)!k appearances

of members of F . Each members appears consecutively in k!(n− k)! circular permutations.

Thus |F| ≤ (n−1)!k
k!(n−k)! =

(
n−1
k−1

)
.

Theorem: (Erdos-Ko-Rado) For n sufficiently large, a t-star of k-sets forms a maximum

EKR(k, t)-family.

Sketch of the proof: We assume that F is a t-intersecting family of k-sets. We push

members of F toward sets containing [t] by using “shift operator” τi,j. For i < j and x ∈ F ,

define τi,j(x) by

τi,j(x) =

{
x− j + i, if j ∈ x and i 6∈ x and x− j + i 6∈ F
x, otherwise.

Let τi,j(F) = {τi,j(x) : x ∈ F}. Note that |τi,j(F)| = |F|. We can verify that τi,j preserves

the t-intersection property and study the form of a family unchanged by these operators.

Remark: Frankl and Wilson showed that the t-star of k-sets is optimal when n ≥ (t +

1)(k − t+ 1). For smaller n, other families are larger.


