Lec 24-25 Extremal Set Theory

Problem: Given a family of k-sets of $[n]$, when are the t-sets contained in those k-sets minimized?

Definition: a k-uniform family is a family of k-sets. The t-shadow of a set system \mathcal{F} is the family of all t-sets contained in members of \mathcal{F}. The shadow $\partial \mathcal{F}$ of a k-uniform family \mathcal{F} is its $(k-1)$-shadow. The shade is the family of all $(k+1)$-sets that contain members of \mathcal{F}.

In the language of shadow, we want to find the family with the smallest shadow, among all k-uniform families of size m.

Lem: k-sets can be indexed, and can also be bijectively mapped to binary k-words.

Colex ordering: a colex ordering on a family of k-sets is obtained by putting $x<y$ if $x_{i}<y_{i}$ in the highest coordinate where their binary incidence vector differ.

Example: the lexicographic order of $\binom{[N]}{3}$ is $123,124,125,126, \ldots, 134,135,136, \ldots, 234,235, \ldots$; the colex ordering for $\binom{[5]}{3}$ is: $123,124,134,234,125,135,145,235,245,345$.

Lemma: If the vector with index m, where $m \geq 1$, in the colex ordering on $\binom{[n]}{k}$ has 1 s in position $m_{1}, m_{2}, \ldots, m_{k}$, then

$$
m=\binom{m_{k}-1}{k}+\binom{m_{k-1}-1}{k-1}+\ldots+\binom{m_{1}-1}{1}+1
$$

Proof: Let σ be the vector with index m. To reach σ, we must skip all vectors whose k th 1 appear before position m_{k}, and there are $\binom{m_{k}-1}{k}$ of these. In addition, some vectors with last 1 in position m_{k} precede σ, and their first $k-11$ s precede position m_{k-1}, and there are $\binom{m_{k-1}-1}{k-1}$ of these. Continuing this procedure.

Definition: (k-binary expansion of m) For given k, each position integer m can be expressed in the form $\binom{m_{k}}{k}+\binom{m_{k-1}}{k-1}+\ldots+\binom{m_{i}}{i}$ with $m_{k}>m_{k-1}>\ldots>m_{i} \geq i$.

Lemma: The shadow of the first m vectors in the colex order on $\binom{[n]}{k}$ consists of the first $\partial_{k}(m)=\binom{m_{k}}{k-1}+\binom{m_{k-1}}{k-2}+\ldots+\binom{m_{i}}{i-1}$ vectors in the colex order on $\binom{[n]}{k-1}$.

The Kruskal-Katona Theorem: The shadow of a family of m elements of $\binom{[n]}{k}$ is minimized by the family consisting of the first m elements in the colex ordering on $\binom{[n]}{k}$. Furthermore, the size of the shadow is $\partial_{k}(m)$.

Proof: let \mathcal{F} be a set of m elements in $\binom{[n]}{k}$. The compression of \mathcal{F} is the set $C \mathcal{F}$ consisting of the first $|\mathcal{F}|$ elements in the colex ordering on $\binom{[n]}{k}$. The idea is to show that $|\partial(C \mathcal{F})| \leq|\partial \mathcal{F}|$ when $\mathcal{F} \subset\binom{[n]}{k}$.

Problems: what is the maximum size of a family of sets in which no member contains another (antichain)?

Definition: an antichain of sets is a family of sets in which no member contains another.
Theorem (LYM inequality) Let \mathcal{F} be an antichain on $[n]$. Let $\mathcal{F}_{k}=\mathcal{F} \cap\binom{[n]}{k}$ and $a_{k}=\left|\mathcal{F}_{k}\right|$. Then $\sum_{k} \frac{a_{k}}{\binom{n}{k}} \leq 1$.

Proof: Counts the permutations of X in two different ways. First, by counting all permutations of X directly ($n!$). But secondly, one can generate a permutation (i.e., an order) of the elements of X by selecting a set S in A and concatenating a permutation of the elements of S with a permutation of the nonmembers (elements of $X-S$). If $|S|=k$, it will be associated in this way with $k!(n-k)$! permutations, and in each of them the first k elements will be just the elements of S. Each permutation can only be associated with a single set in A, for if two prefixes of a permutation both formed sets in A then one would be a subset of the other. Therefore, the number of permutations that can be generated by this procedure is $\sum_{S \in A}|S|!(n-|S|)!=\sum_{k} a_{k} k!(n-k)!\leq n!$. It follows that $\sum_{k} \frac{a_{k}}{\binom{n}{k}} \leq 1$.

Proof: by using probabilistic method. Choose a maximal chain C uniformly random.....

Theorem: (Sperner) The maximum size of an antichain of subsets of $[n]$ is $\binom{n}{\lfloor n / 2\rfloor}$, achieved only by antichains whose sets all have the same size.

Proof (using LYM inequality): By LYM inequality, $1 \geq \sum_{k} \frac{a_{k}}{\binom{n}{k}} \geq \sum_{k} \frac{a_{k}}{\left(\begin{array}{l}n / 2\rfloor\end{array}\right)}=\frac{|F|}{\binom{n}{\lfloor n / 2\rfloor}}$.

Problems: what is the maximum size of a family of sets in which no member contains another (antichain) and is also required to be pairwise intersecting?

Definition: An t-intersecting family is a family in which every two sets have at least t common elements. A star is a family of sets having a universal common element; a t-star is a family sharing t universal common elements.

Example: an intersecting family of subsets of [n] has size at most 2^{n-1}.
An other maximum intersecting family consists of all sets with more than half the elements, plus (when n is even) the sets of size $n / 2$ containing a particular element.

Definition: An $E K R(k, t)$-family is an antichain \mathcal{F} that is also a t-intersecting family in which the size of each member is at most k.

Theorem: (Erdos-Ko-Rado, $\mathrm{t}=1$) For $n \geq 2 k$, the maximum size of an $E K R(k, 1)$-family is $\binom{n-1}{k-1}$, achieved by a star in $\binom{[n]}{k}$.

Proof. Let \mathcal{F} be such a family. We may assume that $\mathcal{F} \subseteq\binom{[n]}{k}$.
Given a circular arrangement σ of $[n]$, we ask how many members of \mathcal{F} can occur in σ as a consecutive string of elements. For such a string x, every consecutive k-set that intersects x has a boundary at one of the $k-1$ locations between elements of x. Hence at most $k-1$ members of \mathcal{F} other than x occur consecutively in σ.

Summing this over all $(n-1)$! circular permutations yields at most $(n-1)!k$ appearances of members of \mathcal{F}. Each members appears consecutively in $k!(n-k)$! circular permutations. Thus $|\mathcal{F}| \leq \frac{(n-1)!k}{k!(n-k)!}=\binom{n-1}{k-1}$.

Theorem: (Erdos-Ko-Rado) For n sufficiently large, a t-star of k-sets forms a maximum $E K R(k, t)$-family.

Sketch of the proof: We assume that \mathcal{F} is a t-intersecting family of k-sets. We push members of \mathcal{F} toward sets containing $[t]$ by using "shift operator" $\tau_{i, j}$. For $i<j$ and $x \in \mathcal{F}$, define $\tau_{i, j}(x)$ by

$$
\tau_{i, j}(x)=\left\{\begin{array}{l}
x-j+i, \text { if } j \in x \text { and } i \notin x \text { and } x-j+i \notin \mathcal{F} \\
x, \text { otherwise }
\end{array}\right.
$$

Let $\tau_{i, j}(\mathcal{F})=\left\{\tau_{i, j}(x): x \in \mathcal{F}\right\}$. Note that $\left|\tau_{i, j}(\mathcal{F})\right|=|\mathcal{F}|$. We can verify that $\tau_{i, j}$ preserves the t-intersection property and study the form of a family unchanged by these operators.

Remark: Frankl and Wilson showed that the t-star of k-sets is optimal when $n \geq(t+$ $1)(k-t+1)$. For smaller n, other families are larger.

